Thursday, May 23, 2013

62-03 Basics of Quadratic Equations (Grades 9 to 12) Part-03

Blog-62

Add me on:
                  1) Google Plus :https://plus.google.com/u/0/107775571667386395180/posts
                  2) Facebook: http://www.facebook.com/anil7pute

Dear Students,

Download following files for learning Formulas more effectively. Take the print out of these files and write your answers daily to improve your scores in 10th standard/grade.

[ Note: The following 2 files are available in the secured drive. While downloading, your email might be asked. Please provide it to download the files. I assure that your email-id will not be given to anybody ]

Following two files are very important to improve your base for remembering the formulas. It is 100 % free for all the students of the world. Download these two files, take the Print Out of these files on two sides of the paper and practice these formulas for your benefit to get high scores in Mathematics Standard 10/ Grade 10.

Please send the request for downloading the following files which will really help you to improve your mathematical skills for Standard 10 / Grade 10. This is the PRACTICE SHEET of Formulas.



In the Previous Blog we had seen some important concepts of Quadratic Equation.
 
Some special and critical types of the factors:
Please download the following file and study it very carefully so that you will not find any difficulties while solving quadratic equations. 
Click Here to download the file " Critical-type-of-factors.pdf "
Just go through this downloaded file and be prepared to solve any problem pertaining to these critical factors.

Now we will see few more important problems of quadratic equations:

d]  Solve the quadratic equation  x 2 - 18 x  + 65 = 0 using factorization method.

Solution:
      1) The coefficient of x  is 1 and the sign of the constant term  65 is " + ".
      2)  So,           x 2 - 18 x  + 65 = 0                  Here the factors of 1 & 65 are 
                                                                                5 x 13
                                                                                as we want the sum as 18
                                                                                so we have to take 5 & 13
                                                                                5 x 13
                             x 2 - 5 x - 13 x  + 65 = 0
                       x ( x  -  5 )  -  13 ( x  -  5 ) = 0
                        ( x  -  5 )  ( x  -  13 ) = 0
                        ( x  -  5 )  =  0  or  ( x  -  13 ) = 0
                         x  =  5  or   x  =  13
                         x  =  5  or  x  =  13
       3)  So the roots of the equation are 5 or 13 so Solution Set = { 5, 13 }  

e]  Solve the quadratic equation  x 2 - 24 x  + 143 = 0 using factorization method.

Solution:
      1) The coefficient of x  is 1 and the sign of the constant term  143 is " + ".
      2)  So,           2 - 24 x  + 143 = 0                  Here 143 is odd so 2, 4, 6, 8 are not the factors of           
                                                                             143. Similarly 1 + 4 + 3 = 8, which is not divisible by 3 
                                                                             & 9 so 3 & 9 are also not the factors of 143. Unit digit  
                                                                             is not 5 or 0 so 5 and 10 are not the factors of 143. 
                                                                             Sum of digit at unit place & 100th place is 1 + 3 = 4  
                                                                             which is same as the digit at 10th place so 11 is the  
                                                                             factor of 143  so here the factors of 1 & 143 will be 
                                                                             11 x 13
                             x 2 - 11 x - 13 x  + 143 = 0
                       x ( x  -  11 )  -  13 ( x  -  11 ) = 0
                        ( x  -  11 )  ( x  -  13 ) = 0
                        ( x  -  11 )  =  0  or  ( x  -  13 ) = 0
                         x  =  11  or   x  =  13
                         x  =  5  or  x  =  13
       3)  So the roots of the equation are 11 or 13 so Solution Set = { 11, 13 }  

f]  Solve the quadratic equation  5 x 2 + 56 x  + 11 = 0 using factorization method.

Solution:
      1) The coefficient of x  is 5 and the sign of the constant term  11 is " + ".
      2)  So,          5 x 2 + 56 x  + 11 = 0                  Here the factors of 5 & 11 with addition as 56 are 
                                                                             55 x 1
                                                                             as we want the sum as 56
                                                                             so we have to take 55 & 1
                                                                             55 x 13
                          5  x 2 + 55 x  +  x  + 11 = 0
                     5 x ( x  +  11 )  +  ( x  +  11 ) = 0
                        ( 5 x  +  1 )  ( x  +  11 ) = 0
                        ( 5 x  +  1 )  =  0  or  ( x  +  11 ) = 0
                       5 x  =  - 1  or  x  =  - 13
                         x  =  - 1/5  or  x  =  - 11
       3)  So the roots of the equation are - 1/5 or - 11 so Solution Set = { - 1/5, - 11 }  

g]  Solve the quadratic equation  2 x 2 + 21 x  + 45 = 0 using factorization method.

Solution:
      1) The coefficient of x  is 2 and the sign of the constant term  45 is " + ".
      2)  So,          2 x 2 + 21 x  + 45 = 0                  Here the factors of 2 & 45 with addition as 21 are 
                                                                             2 x 45
                                                                             2 x 5 x 9
                                                                             2 x 5 x 3 x 3
                                                                             (2 x 3) x (5 x 3)
                                                                             6 x 15
                                                                             as we want the sum as 21
                                                                             so we have to take 6 & 15
                                                                             6 x 15
                          2 x 2 + 6 x  + 15 x + 45 = 0 
                     2 x ( x  +  3 )  + 15 ( x  +  3 ) = 0
                        ( 2 x  +  15 )  ( x  +  3 ) = 0
                        ( 2 x  +  15 )  =  0  or  ( x  +  3 ) = 0
                       2 x  =  - 15  or  x  =  - 3
                         x  =  - 15/2  or  x  =  - 3
       3)  So the roots of the equation are - 15/2 or - 3 so Solution Set = { - 3, - 15/2 }  
h]  Solve the quadratic equation   x 2 + 5 3 x  + 18 = 0 using factorization method.

Solution:
      1) The coefficient of x  is 1 and the sign of the constant term  18 is " + ".
      2)  So,          2 + 5 3 x  + 18 = 0                  Here the factors of 1 & 18 with addition as 5 are 
                                                                             1 x 18
                                                                             3 x 2 x 3
                                                                             (2 3) x (3 3)
                                                                             as we want the sum as 5 3
                                                                             so we have to take 3 & 3
                                                                             6 x 15
                           x 2 + 3 x  + 3 x + 18 = 0 
                       x ( x  +  3 )  + 3 ( x  +  3 ) = 0
                        ( x  +  3 )  ( x  +  3 ) = 0
                        ( x  +  3 )  =  0  or  ( x  +  3 ) = 0
                        x  =  - 3  or  x  =  - 3
       3)  So the roots of the equation are - 3 or - 3 so Solution Set = { - 3  - 3 }  
Few more problems will be discussed in the next Blog.

Please write your opinions about the methods given for these problems.

Anil Satpute