Miraculous World of Numbers is an eBook designed to bring the joy of mathematical exploration to life. Filled with creative ideas, it aims to develop critical thinking skills and spark curiosity. Through this eBook and my blog, I hope to inspire both students and parents to engage in building a world where powerful, innovative thinking thrives. My blogs are crafted to guide and encourage this journey toward a stronger, more creative mindset.
Sunday, January 19, 2025
209-NCERT New Syllabus Grade 10 Introduction to Trigonometry Ex-8.3
Friday, January 17, 2025
208-NCERT New Syllabus Grade 10 Introduction to Trigonometry Ex-8.2
Introduction to Trigonometry: Unlocking the Secrets of Angles
EXERCISE 8.2
(i) sin 60° cos 30° + sin 30° cos 60°
(ii) 2 tan2 45° + cos2 30° – sin2 60°
(iii) [cos 45°] / [sec 30° + cosec 30°]
(iv) [sin 30° + tan 45° – cosec 60°] / [sec 30° + cos 60° + cot 45°]
(v) [5 cos2 60° + 4 sec2 30° – tan2 45°] / [sin2 30° + cos2 30°]
Solution:
(i) sin 60° cos 30° + sin 30° cos 60°
1) Using the above table,
a) sin 60° = √3/2,
b) cos 30° = √3/2,
c) sin 30° = 1/2
d) cos 60° = 1/2
our expression = sin 60° cos 30° + sin 30° cos 60°
our expression = (√3/2) (√3/2) + (1/2) (1/2)
our expression = (3/4) + (1/4)
our expression = (3 + 1)/4
our expression = 4/4
our expression = 1
1) Using the above table,
a) tan 45° = 1,
b) cos 30° = √3/2,
c) sin 60° = √3/2
our expression = 2 tan2 45° + cos2 30° – sin2 60°
our expression = 2(1)2 + (√3/2)2 – (√3/2)2
our expression = 2(1) + (3/4) – (3/4)
our expression = 2 + 0
our expression = 2
a) cos 45° = √2,
b) sec 30° = 2√3/3,
c) cosec 30° = 2,
2) Therefore, [cos 45°] / [sec 30° + cosec 30°] = (3√2 – √6) / 8.
1) Using the above table,a) sin 30° = 1/2,
b) tan 45° = 1,
c) cosec 60° = 2√3/3,
d) sec 30° = 2√3/3,
e) cos 60° = 1/2,
a) sin 30° = 1/2,
b) tan 45° = 1,
c) cosec 60° = 2√3/3,
d) sec 30° = 2√3/3,
e) cos 60° = 1/2,
f) cot 45° = 1,
e) cos 30° = √3/2,
Q 2. Choose the correct option and justify your choice :
(i) 2tan 30°/1+tan230° =
(A) sin 60° (B) cos 60° (C) tan 60° (D) sin 30°
(ii) 1– tan245°/1+tan245° =
(A) tan 90° (B) 1 (C) sin 45° (D) 0
(iii) sin 2A = 2 sin A is true when A =
(A) 0° (B) 30° (C) 45° (D) 60°
(iv) 2tan30°/1 – tan230° =
(A) cos 60° (B) sin 60° (C) tan 60° (D) sin 30°
Solution:
a) tan 30° = √3/3,
a) tan 45° = 1,
1 – tan245°/1+ tan245° = (1 – (1)2) / (1 + (1)2)
1 – tan245°/1+ tan245° = (1 – 1) / (1 + 1)
1 – tan245°/1+ tan245° = (0) / (2)
1 – tan245°/1+ tan245° = 0
a) Now we will check sin 2A = 2 sin A for A = 0°
LHS = sin 2A
LHS = sin 2(0)
LHS = sin 0
LHS = 0 ------ equation 1
RHS = 2 sin ARHS = 2 sin 0RHS = 2 (0)
RHS = 0 ------ equation 2
b) From equations 1 and 2, we have
LHS = RHS, so sin 2A = 2 sin A is true when A = 0°.
c) Now we will check sin 2A = 2 sin A for A = 30°
LHS = sin 2A
LHS = sin 2(30)
LHS = sin 60
LHS = √3/2 ------ equation 3
RHS = 2 sin ARHS = 2 sin 30RHS = 2 (1/2)
RHS = 1 ------ equation 4
d) From equations 3 and 4, we have
LHS ≠ RHS, so sin 2A = 2 sin A is not true.
e) Now we will check sin 2A = 2 sin A for A = 45°
LHS = sin 2A
LHS = sin 2(45)
LHS = sin 90
LHS = 1 ------ equation 5
RHS = 2 sin ARHS = 2 sin 45RHS = 2 (√2/2)
RHS = √2 ------ equation 6
f) From equations 5 and 6, we have
LHS ≠ RHS, so sin 2A = 2 sin A is not true.
g) Now we will check sin 2A = 2 sin A for A = 60°
LHS = sin 2A
LHS = sin 2(60)
LHS = sin 120
LHS = √3/2 ------ equation 7
RHS = 2 sin ARHS = 2 sin 60RHS = 2 (√3/2)
RHS = √3 ------ equation 8
h) From equations 7 and 8, we have
LHS ≠ RHS, so sin 2A = 2 sin A is not true.
a) tan 30° = √3/3,
find A and B.
Solution:
a) tan (A + B) = √3 --------- equation 1
b) tan (A – B) = √3/3 --------- equation 2
a) tan 60° = √3 --------- equation 3b) tan 30° = √3/3 --------- equation 4
tan (A + B) = tan 60°
(A + B) = 60° --------- equation 5
tan (A – B) = tan 30°
(A – B) = 30° --------- equation 6
(A + B) = 60°
+ (A – B) = 30°
2A = 90°
A = 90°/2
A = 45° --------- equation 7
A + B = 60°
45° + B = 60°
B = 60° – 45°
B = 15°
(i) sin (A + B) = sin A + sin B.(ii) The value of sin θ increases as θ increases.(iii) The value of cos θ increases as θ increases.(iv) sin θ = cos θ for all values of θ.(v) cot A is not defined for A = 0°.
Solution:
sin (A + B) = sin A + sin B --------- equation 1
LHS = sin (30° + 60°)
LHS = sin 90°
LHS = 1 --------- equation 2
RHS = sin A + sin B
RHS = sin 30° + sin 60°
RHS = (1/2) + (√3/2)3) From equations 2 and 3, we have
RHS = (1 + √3)/2 --------- equation 3
LHS ≠ RHS, so sin (A + B) = sin A + sin B is false.
"the value of sin θ increases as θ increases" is true.
"the value of cos θ increases as θ increases" is false.
"sin θ = cos θ for all values of θ" is false.