Click here for the previous basics of trigonometry.
Now we will study the next part of trigonometry. 
Today we will study trigonometric ratios of 0°, 30°, 45°, and 60°.
Here angle AOP is 0°.
According to the diagram, OP = r, and the coordinates of point P are (r, 0). So the x-coordinate of point P is r and the y-coordinate of point P is 0.
So, all the trigonometric ratios of q = 0° with
 x = r,
 y = 0,
 r  = r.
| 
a) sin 0° = y/r 
    sin 0° = 0/r    
    sin 0° = 0 | 
b) cos 0° = x/r 
    cos 0° = r/r    
    cos 0° = 1 | 
c) tan 0° = y/x 
    tan 0° = 0/r    
    tan 0° = 0 | 
| 
d) csc 0° = r/y 
    csc 0° = r/0      
    csc 0° = ∞ | 
e) sec 0° = r/x 
    sec 0° = r/r    
    sec 0° = 1 | 
f) cot 0° = x/y 
    cot 0° = r/0    
    cot 0° = ∞ | 
2) Trigonometric ratios of an angle q = 30°
Here angle AOP is 30°.
We know that the side opposite to 30° is half the hypotenuse and the side opposite to 60° is √3/ 2 times the hypotenuse.
So if hypotenuse OP = r, then  AP = r/2 and OA = (√3 r)/ 2.
Here the coordinates of point P will be P ((√3 r)/ 2, r/2).
Here the coordinates of point P will be P ((√3 r)/ 2, r/2).
So, all the trigonometric ratios of q = 30° with
 x = (√3 r)/ 2,
 y = r/2,
 r = r.
| 
a) sin 30° = y/r 
    sin 30° = (r/2)/r    
    sin 30° = 1/2 | 
b) cos 30° = x/r 
    cos 30° = [(√3 r)/2]/r            cos 30° = √3/2 | 
c) tan 30° = y/x 
    tan 30° = (r/2)/(√3 r)/2    
    tan 30° = 1/√3 | 
| 
d) csc 30° = r/y 
    csc 30° =  r/(r/2)      
    csc 30° = 2 | 
e) sec 30° = r/x 
    sec 30° = r/[(√3 r)/2]    
    sec 30° = 2/√3 | 
f) cot 30° = x/y 
    cot 30° = [(√3 r)/ 2]/(r/2)    
    cot 30° = √3 | 
We know that the side opposite 45° is 1/√2 times the hypotenuse.
So if hypotenuse OP = r, then  AP = r/√2 and OA = r/√2.
Here the coordinates of point P will be P (r/√2, r/√2).
Here the coordinates of point P will be P (r/√2, r/√2).
So, all the trigonometric ratios of q = 45° with
 x = r/√2,
 y = r/√2,
 r = r.
| 
a) sin 45° = y/r 
     sin 45°  = [r/√2]/r    
     sin 45°  = 1/√2 | 
b) cos 45° = x/r 
     cos 45° = [r/√2]/r 
     cos 45° = 1/√2 | 
c) tan 45° = y/x 
     tan 45°  = [r/√2]/ [r/√2]   
     tan 45°  = 1 | 
| 
d) csc 45° = r/y 
    csc 45° =  r/[r/√2] 
    csc 45° = √2 | 
e) sec 45° = r/x 
    sec 45° = r/[r/√2]    
    sec 45° = √2 | 
f) cot 45° = x/y 
    cot 45° = [r/√2]/ [r/√2]    
    cot 45° = 1 | 
We know that the side opposite 60° is √3/2 times the hypotenuse and the side opposite 30° is half times the hypotenuse.
So if hypotenuse OP = r, then  AP = (√3 r)/2 and OA = r/2.
Here the coordinates of point P will be P (r/2, (√3 r)/2).
Here the coordinates of point P will be P (r/2, (√3 r)/2).
So, all the trigonometric ratios of q = 60° with
 x = r/2,
 y = (√3 r)/2,
 r = r.
| 
a) sin 60° = y/r 
    sin 60° = [(√3 r)/2]/r    
    sin 60° = √3/2 | 
b) cos 60° = x/r 
     cos 60° = [r/2]/r cos 60° = 1/2 | 
c) tan 60° = y/x 
    tan 60° = [(√3 r)/2]/[r/2]   
    tan 60° = √3 | 
| 
d) csc 60° = r/y 
    csc 60° =  r/[(√3 r)/2] csc 60° = 2/√3 | 
e) sec 60° = r/x 
    sec 60° = r/[r/2]    
    sec 60° = 2 | 
f) cot 60° = x/y 
    cot 60° = [r/2]/[(√3 r)/2]    
    cot 60° = 1/√3 | 
In the next blog, we will study the trigonometric ratios of 90°, and 180° and the tabulated form of all the trigonometric ratios.




 
No comments:
Post a Comment