Thursday, May 4, 2023

145-NCERT-10-2-Polynomials - Ex-2.2

NCERT
10th Mathematics
Exercise 2.2
Topic: 2 Polynomials

Click here for ⇨ NCERT-10-2-Polynomials - Ex-2.1

EXERCISE 2.2

Q1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) x2 – 2x – 8    (ii) 4s2 – 4s + 1   (iii) 6x2 – 3 – 7x
(iv) 4u2 + 8u      (v) t2 – 15            (vi) 3x2 – x – 4

Explanation:

1) Let ax2 + bx + c be the quadratic polynomial. Let us denote it as p(x).
2) That is, p(x) = ax2 + bx + c.
3) Zeroes of p(x) can be found out by taking p(x) = 0. That is ax2 + bx + c = 0.
4) To get zeroes of p(x), we will solve the equation ax2 + bx + c = 0.
5) We know that if 𝝰 and 𝛃 be zeroes of the quadratic equation 
ax2 + bx + c = 0, then, 
sum of the zeroes (𝝰 + 𝛃) = - (b/a) = - (Coefficient of x)/Coefficient of x2)
product of the zeroes (𝝰 x 𝛃) = (c/a) = (Constant term)/Coefficient of x2)

Solution:

(i) x2 – 2x – 8 
1) Quadratic polynomial = x2 – 2x – 8                     
here last term is 8 and its sign is minus, factorise 8 in such a way
that their difference will be - 2.
- 8 = (- 4) x (2) (- 4 + 2 = - 2).
= x2 – 4x + 2x – 8
= (x2 – 4x) + (2x – 8)
= x(x – 4) + 2(x – 4)
= (x – 4)(x + 2)
2) So x2 – 2x – 8 = (x – 4)(x + 2)
3) The value of p(x) is 0 when (x – 4) = 0 or (x + 2) = 0.
4) So, p(x) is 0 when x = 4 or x = - 2.
5) Therefore zeroes of x2 – 2x – 8 are 4 and - 2. i.e 𝝰 = 4 and 𝛃 = - 2,
a = 1, b = - 2 and c = - 8
6) Now we will verify the relationship between the zeroes and the coefficients.
7) (𝝰 + 𝛃) = - (b/a)
LHS = (𝝰 + 𝛃)
= (4 + (- 2))
= (2) ------------------equation 1
RHS = - (b/a)
= - (- 2)/1
= (2) ------------------equation 2
From equation 1 and equation 2, we have LHS = RHS.
8) Similarly, we will prove (𝝰 x 𝛃) = (c/a)
LHS = (𝝰 x 𝛃)
= (4 x (- 2))
= (- 8) ------------------equation 3
RHS = (c/a)
= (- 8)/1
= (- 8) ------------------equation 4
From equation 3 and equation 4, we have LHS = RHS.
9) Hence verified.

(ii) 4s2 – 4s + 1
1) Quadratic polynomial = 4s2 – 4s + 1
here last term is 1 and its sign is plus, factorise 1 & 4 in such a way that their addition will be - 4. 
4 = (- 2) x (- 2) (- 2 - 2 = - 4).
= 4s2 – 2s - 2s + 1
= (4s2 – 2s) - (2s - 1)
= 2s(2s – 1) - (2s - 1)
= (2s – 1)(2s – 1)
2) So 4s2 – 4s + 1 = (2s – 1)(2s – 1)
3) The value of p(s) is 0 when (2s – 1) = 0 or (2s – 1) = 0.
4) So, p(s) is 0 when s = 4 or s = - 2.
5) Therefore zeroes of 4s2 – 4s + 1 are 1/2 and 1/2. i.e 𝝰 = 1/2 and 𝛃 = 1/2,
a = 4, b = - 4 and c = 1
6) Now we will verify the relationship between the zeroes and the coefficients.
7) (𝝰 + 𝛃) = - (b/a)
LHS = (𝝰 + 𝛃)
= [(1/2) + (1/2)]
= (1) ------------------equation 1
RHS = - (b/a)
= - (- 4)/4
= (1) ------------------equation 2
From equation 1 and equation 2, we have LHS = RHS.
8) Similarly, we will prove (𝝰 x 𝛃) = (c/a)
LHS = (𝝰 x 𝛃)
= [(1/2) x (1/2)]
= (1/4) ------------------equation 3
RHS = (c/a)
= (1)/4
= (1/4) ------------------equation 4
From equation 3 and equation 4, we have LHS = RHS.
9) Hence verified.

(iii) 6x2 – 3 – 7x
1) Quadratic polynomial = 6x2 – 7x - 3
here last term is 3 and its sign is minus, factorise 6 & 3 in such a way that their difference will be - 7. 
6 x (- 3) = (2) x (- 3 x 3) (2 - 9 = - 7).
6x2 + 2x - 9x - 3
= (6x2 + 2x) - (9x + 3)
= 2x(3x + 1) - 3(3x + 1)
= (3x + 1)(2x – 3)
2) So 6x2 – 7x - 3 = (3x + 1)(2x – 3)
3) The value of p(x) is 0 when (3x + 1) = 0 or (2x – 3) = 0.
4) So, p(x) is 0 when x = -1/3 or x = 3/2.
5) Therefore zeroes of 6x2 – 7x - 3 are -1/3 and 3/2. i.e 𝝰 = -1/3 and 𝛃 = 3/2,
a = 6, b = - 7 and c = -3
6) Now we will verify the relationship between the zeroes and the coefficients.
7) (𝝰 + 𝛃) = - (b/a)
LHS = (𝝰 + 𝛃)
= [(-1/3) + (3/2)]
= (7/6) ------------------equation 1
RHS = - (b/a)
= - (- 7)/6
= (7/6) ------------------equation 2
From equation 1 and equation 2, we have LHS = RHS.
8) Similarly, we will prove (𝝰 x 𝛃) = (c/a)
LHS = (𝝰 x 𝛃)
= [(-1/3) x (3/2)]
= (-1/2) ------------------equation 3
RHS = (c/a)
= (-3)/6
= (-1/2) ------------------equation 4
From equation 3 and equation 4, we have LHS = RHS.
9) Hence verified.

(iv) 4u2 + 8u
1) Quadratic polynomial = 4u2 + 8u
here we can take 4u common directly.
= 4u(u + 2)
2) So 4u2 + 8u = 4u(u + 2)
3) The value of p(u) is 0 when u = 0 or (u + 2) = 0.
4) So, p(u) is 0 when u = 0 or u = - 2.
5) Therefore zeroes of 4u2 + 8u are 0 and - 2. i.e 𝝰 = 0 and 𝛃 = - 2,
a = 4, b = 8 and c = 0
6) Now we will verify the relationship between the zeroes and the coefficients.
7) (𝝰 + 𝛃) = - (b/a)
LHS = (𝝰 + 𝛃)
= [(0) + (- 2)]
= (- 2) ------------------equation 1
RHS = - (b/a)
= - (8)/4
= (- 2) ------------------equation 2
From equation 1 and equation 2, we have LHS = RHS.
8) Similarly, we will prove (𝝰 x 𝛃) = (c/a)
LHS = (𝝰 x 𝛃)
= [(0) x (- 2)]
= (0) ------------------equation 3
RHS = (c/a)
= (0)/4
= (0) ------------------equation 4
From equation 3 and equation 4, we have LHS = RHS.
9) Hence verified.

(v) t2 – 15
1) Quadratic polynomial = t2 - 15
here, use the formula
(a2 - b2) = (a - b) (a + b) directly.
= (t + 15) (t - 15)
2) So t2 - 15 = (t + 15) (t - 15)
3) The value of p(t) is 0 when (t - 15) = 0 or (t + 15) = 0.
4) So, p(t) is 0 when t = 15 or t = -15.
5) Therefore zeroes of t2 - 15 are 15 and -15. i.e 𝝰 = 15 and 𝛃 = -15,
a = 1, b = 0 and c = -15
6) Now we will verify the relationship between the zeroes and the coefficients.
7) (𝝰 + 𝛃) = - (b/a)
LHS = (𝝰 + 𝛃)
= [(15) + (-15)]
= (0) ------------------equation 1
RHS = - (b/a)
= - (0)/1
= (0) ------------------equation 2
From equation 1 and equation 2, we have LHS = RHS.
8) Similarly, we will prove (𝝰 x 𝛃) = (c/a)
LHS = (𝝰 x 𝛃)
= [(15) x (-15)]
= (-15) ------------------equation 3
RHS = (c/a)
= (-15)/1
= (-15) ------------------equation 4
From equation 3 and equation 4, we have LHS = RHS.
9) Hence verified.

(vi) 3x2 – x – 4
1) Quadratic polynomial = 3x2 – x – 4                     
here last term is 4 and its sign is minus, factorise 3 x 4 in such a way
that their difference will be - 1.
3 x (- 4) = (3) x (- 4) (3 - 4 = - 1).
= 3x2 + 3x - 4x – 4
= (3x2 + 3x) - (4x + 4)
= 3x(x + 1) - 4(x + 1)
= (3x – 4)(x + 1)
2) So 3x2 – x – 4 = (3x – 4)(x + 1)
3) The value of p(x) is 0 when (3x – 4) = 0 or (x + 1) = 0.
4) So, p(x) is 0 when x = 4/3 or x = - 1.
5) Therefore zeroes of 3x2 – x – 4 are 4/3 and - 1. i.e 𝝰 = 4/3 and 𝛃 = - 1,
a = 3, b = - 1 and c = - 4
6) Now we will verify the relationship between the zeroes and the coefficients.
7) (𝝰 + 𝛃) = - (b/a)
LHS = (𝝰 + 𝛃)
= (4/3 + (- 1))
= (1/3) ------------------equation 1
RHS = - (b/a)
= - (- 1)/3
= (1/3) ------------------equation 2
From equation 1 and equation 2, we have LHS = RHS.
8) Similarly, we will prove (𝝰 x 𝛃) = (c/a)
LHS = (𝝰 x 𝛃)
= (4/3 x (- 1))
= (- 4/3) ------------------equation 3
RHS = (c/a)
= (- 4)/3
= (- 4/3) ------------------equation 4
From equation 3 and equation 4, we have LHS = RHS.
9) Hence verified.

Q2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) 1/4, -1    (ii) 2, 1/3       (iii) 0, √5
(iv) 1, 1      (v) -1/4, 1/4     (vi) 4, 1

Explanation:

1) Let 𝝰 and 𝛃 be the zeroes of the polynomial p(x).
2) So p(x) = (x - 𝝰)(x - 𝛃)
p(x) = x2 – (𝝰 + 𝛃) x + (𝝰 x 𝛃) 

Solution:

(i) 1/4, -1
1) Let 𝝰 and 𝛃 be the zeroes of p(x)
2) Here sum of zeroes is 1/4 and the product of zeroes is -1.
3) i.e. (𝝰 + 𝛃) = 1/4 and (𝝰 x 𝛃) = -1, so,
p(x) = x2 – (𝝰 + 𝛃) x + (𝝰 x 𝛃)
= x2 – (1/4) x + (-1)
= 4x2 – x + (-4)
p(x) = 4x2 – x - 4
4) Quadratic polynomial is 4x2 – x - 4.

(ii) 2, 1/3
1) Let 𝝰 and 𝛃 be the zeroes of p(x)
2) Here sum of zeroes is 2 and the product of zeroes is 1/3.
3) i.e. (𝝰 + 𝛃) = 2 and (𝝰 x 𝛃) = 1/3, so,
p(x) = x2 – (𝝰 + 𝛃) x + (𝝰 x 𝛃)
= x2 – (2) x + (1/3)
= x2 – 2x + (1/3)
= 3x2 – 32x + 1 
p(x) = 3x2 – 32x + 1 
4) Quadratic polynomial is 3x2 – 32x + 1.

(iii) 0, √5
1) Let 𝝰 and 𝛃 be the zeroes of p(x)
2) Here sum of zeroes is 0 and the product of zeroes is √5.
3) i.e. (𝝰 + 𝛃) = 0 and (𝝰 x 𝛃) = √5, so,
p(x) = x2 – (𝝰 + 𝛃) x + (𝝰 x 𝛃)
= x2 – (0) x + (√5)
= x2 – 0x + √5
p(x) = x2 + √5
4) Quadratic polynomial is x2 + √5.

(iv) 1, 1
1) Let 𝝰 and 𝛃 be the zeroes of p(x)
2) Here sum of zeroes is 1 and the product of zeroes is 1.
3) i.e. (𝝰 + 𝛃) = 1 and (𝝰 x 𝛃) = 1, so,
p(x) = x2 – (𝝰 + 𝛃) x + (𝝰 x 𝛃)
= x2 – (1) x + (1)
= x2 – x + 1
p(x) = x2 – x + 1
4) Quadratic polynomial is x2 – x + 1.

(v) -1/4, 1/4
1) Let 𝝰 and 𝛃 be the zeroes of p(x)
2) Here sum of zeroes is -1/4 and the product of zeroes is 1/4.
3) i.e. (𝝰 + 𝛃) = -1/4 and (𝝰 x 𝛃) = 1/4, so,
p(x) = x2 – (𝝰 + 𝛃) x + (𝝰 x 𝛃)
= x2 – (-1/4) x + (1/4)
= 4x2 + x + 1
p(x) = 4x2 + x + 1
4) Quadratic polynomial is 4x2 + x + 1.

(vi) 4, 1
1) Let 𝝰 and 𝛃 be the zeroes of p(x)
2) Here sum of zeroes is 4 and the product of zeroes is 1.
3) i.e. (𝝰 + 𝛃) = 4 and (𝝰 x 𝛃) = 1, so,
p(x) = x2 – (𝝰 + 𝛃) x + (𝝰 x 𝛃)
= x2 – (4) x + (1)
= x2 – 4x + 1
p(x) = x2 – 4x + 1
4) Quadratic polynomial is x2 – 4x + 1.

No comments:

Post a Comment