NCERT10th MathematicsExercise 5.1Topic: 5 Arithmetic Progressions
Click here for ⇨ NCERT-10-4-Quadratic Equations-Ex- 4.4
EXERCISE 5.1
(i) The taxi fare after each km when the fare is Rs 15 for the first km and Rs 8 for each additional km.
(ii) The amount of air present in a cylinder when a vacuum pump removes 1/4 of the air remaining in the cylinder at a time.
(iii) The cost of digging a well after every metre of digging, when it costs Rs 150 for the first metre and rises by Rs 50 for each subsequent metre.
(iv) The amount of money in the account every year, when Rs 10000 is deposited at compound interest at 8 % per annum.
Explanation:
adding a fixed number to the preceding term except the first term.
AP will be: a, (a + d), (a + 2d), (a + 3d) ...
Solution:
(i) The taxi fare after each km when the fare is Rs 15 for the first km and Rs 8 for each additional km.
a) Taxi fare for the first km = 15.
b) Taxi fare for the first 2 km = 15 + 8 = 23.
c) Taxi fare for the first 3 km = 15 + 8 + 8 = 31.
remaining in the cylinder, so
a) The volume after first removal
= x - (x/4)
= x(1 - 1/4)
= 3x/4 ---------------- equation 1
b) The volume after second removal
= 3x/4 - 1/4(3x/4)
= (3x/4)(1 - 1/4)
= (3x/4)(4 - 1)/4
= (3x/4)(3/4)= 9x/16 ---------------- equation 2
c) The volume after third removal
= 9x/16 - 1/4(9x/16)
= (9x/16)(1 - 1/4)
= (9x/16)(3/4)
= 27x/64 ---------------- equation 3
a) Second term - first term = 3x/4 - x
= (3x - 4x)/4
= - x/4 ---------------- equation 4.
b) Third term - Second term = 9x/16 - 3x/4
= (9x - 12x)/16
= - 3x/16 ---------------- equation 5.
same, we can say that these terms are not in AP.
a) Cost of digging the well after 1 meter = 150.
b) Cost of digging the well after 2 meter = 150 + 50 = 200.
c) Cost of digging the well after 3 meter = 150 + 50 + 50 = 250.
amount received will be A = P[1+(r/100)]n.
a) The amount after first year
A = P[1+(r/100)]n
A = 10000[1+(8/100)]1
A = 10000[1+(8/100)] ---------------- equation 1
b) The amount after second year
A = P[1+(r/100)]n
A = 10000[1+(8/100)]2 ---------------- equation 2
c) The amount after third year
A = P[1+(r/100)]nA = 10000[1+(8/100)]3 ---------------- equation 3
[1+(8/100)]4 are in AP or not.
a) Second term - first term
= 10000[1+(8/100)]2 - 10000[1+(8/100)]
= 10000[1+(8/100)]{1+(8/100) - 1}= 10000[1+(8/100)](8/100)= 10000(8/100)[1+(8/100)] ---------------- equation 4.
b) Third term - Second term
= 10000[1+(8/100)]3 - 10000[1+(8/100)]2= 10000[1+(8/100)]2{1+(8/100) - 1}= 10000[1+(8/100)]2(8/100)
= 10000(8/100)[1+(8/100)]2 ---------------- equation 5.
same, we can say that these terms are not in AP.
(i) a = 10, d = 10 (ii) a = –2, d = 0 (iii) a = 4, d = – 3
(iv) a = – 1, d = 1/2 (v) a = – 1.25, d = – 0.25
Explanation:
adding a fixed number to the preceding term except the first term.
AP will be: a, (a + d), (a + 2d), (a + 3d) ...
Solution:
2) Here, a1 = a = 10 is the first term and d = 10 is the common difference.
3) Now we will find the terms of an AP:
a) First term:
a1 = 10
b) Second term:
a2 = a1 + d
a2 = 10 + 10
a2 = 20
c) Third term:
a3 = a2 + d
a3 = 20 + 10
a3 = 30
d) Fourth term:
a4 = a3 + d
a4 = 30 + 10
a4 = 40
2) Here, a1 = a = - 2 is the first term and d = 0 is the common difference.
3) Now we will find the terms of an AP:
a) First term:
a1 = - 2
b) Second term:
a2 = a1 + d
a2 = - 2 + 0
a2 = - 2
c) Third term:
a3 = a2 + d
a3 = - 2 + 0
a3 = - 2
d) Fourth term:
a4 = a3 + d
a4 = - 2 + 0
a4 = - 2
2) Here, a1 = a = 4 is the first term and d = - 3 is the common difference.
3) Now we will find the terms of an AP:
a) First term:
a1 = 4
b) Second term:
a2 = a1 + d
a2 = 4 - 3
a2 = 1
c) Third term:
a3 = a2 + d
a3 = 1 - 3
a3 = - 2
d) Fourth term:
a4 = a3 + d
a4 = - 2 - 3
a4 = - 5
2) Here, a1 = a = - 1 is the first term and d = 1/2 is the common difference.
3) Now we will find the terms of an AP:
a) First term:
a1 = - 1
b) Second term:
a2 = a1 + d
a2 = - 1 + 1/2
a2 = - 1/2
c) Third term:
a3 = a2 + d
a3 = - 1/2 + 1/2
a3 = 0
d) Fourth term:
a4 = a3 + d
a4 = 0 + 1/2
a4 = 1/2
2) Here, a1 = a = - 1.25 is the first term and d = - 0.25 is the common difference.
3) Now we will find the terms of an AP:
a) First term:
a1 = - 1.25
b) Second term:
a2 = a1 + d
a2 = - 1.25 - 0.25
a2 = - 1.50
c) Third term:
a3 = a2 + d
a3 = - 1.50 - 0.25
a3 = - 1.75
d) Fourth term:
a4 = a3 + d
a4 = - 1.75 - 0.25
a4 = - 2.00
and - 2.00.
(i) 3, 1, – 1, – 3, . . . (ii) – 5, – 1, 3, 7, . . .
(iii) 1/3, 5/3, 9/3, 13/3, . . . (iv) 0.6, 1.7, 2.8, 3.9, . . .
Explanation:
adding a fixed number to the preceding term except the first term.
AP will be: a, (a + d), (a + 2d), (a + 3d) ...
that the terms a1, a2, a3, a4, are in AP.
Solution:
a) First difference:
d = a2 - a1 = 1 - 3
d = a2 - a1 = - 2 --------- equation 1
b) Second difference:
d = a3 - a2 = - 1 - 1
d = a3 - a2 = - 2 --------- equation 2
a) First difference:
d = a2 - a1 = - 1 - (- 5)
d = a2 - a1 = - 1 + 5
d = a2 - a1 = 4 --------- equation 1
b) Second difference:
d = a3 - a2 = 3 - (- 1)
d = a3 - a2 = 3 + 1
d = a3 - a2 = 4 --------- equation 2
a) First difference:
d = a2 - a1 = 5/3 - 1/3
d = a2 - a1 = (5 - 1)/3
d = a2 - a1 = 4/3 --------- equation 1
b) Second difference:
d = a3 - a2 = 9/3 - 5/3
d = a3 - a2 = (9 - 5)/3
d = a3 - a2 = 4/3 --------- equation 2
a) First difference:
d = a2 - a1 = 1.7 - 0.6
d = a2 - a1 = 1.1 --------- equation 1
b) Second difference:
d = a3 - a2 = 2.8 - 1.7
d = a3 - a2 = 1.1 --------- equation 2
(i) 2, 4, 8, 16, . . .(ii) 2, 5/2, 3, 7/2, . . .(iii) – 1.2, – 3.2, – 5.2, – 7.2, . . .(iv) – 10, – 6, – 2, 2, . . .(v) 3, 3 + √2 , 3 + 2 √2 , 3 + 3 √2 , . . .(vi) 0.2, 0.22, 0.222, 0.2222, . . .(vii) 0, – 4, – 8, –12, . . .(viii) - 1/2, - 1/2, - 1/2, - 1/2, . . .(ix) 1, 3, 9, 27, . . .(x) a, 2a, 3a, 4a, . . .(xi) a, a2, a3, a4, . . .(xii) √2, √8, √18 , √32, . . .(xiii) √3, √6, √9 , √12 , . . .(xiv) 12, 32, 52, 72, . . .(xv) 12, 52, 72, 73, . . .
Explanation:
adding a fixed number to the preceding term except the first term.
AP will be: a, (a + d), (a + 2d), (a + 3d) ...
that the terms a1, a2, a3, a4, are in AP.
Solution:
a) First difference:
d = a2 - a1 = 4 - 2
d = a2 - a1 = 2 --------- equation 1
b) Second difference:
d = a3 - a2 = 8 - 4
d = a3 - a2 = 4 --------- equation 2
a) First difference:
d = a2 - a1 = 5/2 - 2d = a2 - a1 = (5 - 4)/2d = a2 - a1 = 1/2 --------- equation 1
b) Second difference:d = a3 - a2 = 3 - 5/2d = a3 - a2 = (6 - 5)/2d = a3 - a2 = 1/2 --------- equation 2
a) Fifth term:
a5 = a4 + d
a5 = 7/2 + 1/2
a5 = (7 + 1)/2a5 = 8/2a5 = 4
b) Sixth term:
a6 = a5 + d
a6 = 4 + 1/2
a6 = (8 + 1)/2a6 = 9/2
c) Seventh term:
a7 = a6 + d
a7 = 9/2 + 1/2
a7 = (9 + 1)/2a7 = 10/2
a7 = 5
a) First difference:
d = a2 - a1 = (- 3.2) - (- 1.2)d = a2 - a1 = - 3.2 + 1.2d = a2 - a1 = - 2 --------- equation 1
b) Second difference:d = a3 - a2 = (- 5.2) - (- 3.2)
d = a3 - a2 = - 5.2 + 3.2d = a3 - a2 = - 2 --------- equation 2
a) Fifth term:
a5 = a4 + d
a5 = - 7.2 + (- 2)
a5 = - 7.2 - 2a5 = - 9.2
b) Sixth term:
a6 = a5 + d
a6 = - 9.2 + (- 2)
a6 = - 9.2 - 2a6 = - 11.2
c) Seventh term:
a7 = a6 + d
a7 = - 11.2 + (- 2)
a7 = - 11.2 - 2a7 = - 13.2
a) First difference:
d = a2 - a1 = (- 6) - (- 10)d = a2 - a1 = - 6 + 10d = a2 - a1 = 4 --------- equation 1
b) Second difference:d = a3 - a2 = (- 2) - (- 6)
d = a3 - a2 = - 2 + 6d = a3 - a2 = 4 --------- equation 2
a) Fifth term:
a5 = a4 + d
a5 = 2 + 4
a5 = 6
b) Sixth term:
a6 = a5 + d
a6 = 6 + 2
a6 = 8
c) Seventh term:
a7 = a6 + d
a7 = 8 + 2
a7 = 10
a) First difference:
d = a2 - a1 = (3 + √2) - (3)d = a2 - a1 = 3 + √2 - 3d = a2 - a1 = √2 --------- equation 1
b) Second difference:d = a3 - a2 = (3 + 2√2) - (3 + √2)
d = a3 - a2 = 3 + 2√2 - 3 - √2d = a3 - a2 = √2 --------- equation 2
a) Fifth term:
a5 = a4 + d
a5 = (3 + 3√2) + √2
a5 = 3 + 4√2
b) Sixth term:
a6 = a5 + d
a6 = (3 + 4√2) + √2
a6 = 3 + 5√2
c) Seventh term:
a7 = a6 + d
a6 = (3 + 5√2) + √2a6 = 3 + 6√2
a) First difference:
d = a2 - a1 = (0.22) - (0.2)d = a2 - a1 = 0.22 - 0.2d = a2 - a1 = 0.02 --------- equation 1
b) Second difference:d = a3 - a2 = (0.222) - (0.22)
d = a3 - a2 = 0.222 - 0.22d = a3 - a2 = 0.002 --------- equation 2
a) First difference:
d = a2 - a1 = (- 4) - (0)d = a2 - a1 = - 4 + 0d = a2 - a1 = - 4 --------- equation 1
b) Second difference:d = a3 - a2 = (- 8) - (- 4)
d = a3 - a2 = - 8 + 4d = a3 - a2 = - 4 --------- equation 2
a) Fifth term:
a5 = a4 + d
a5 = - 12 + (- 4)
a5 = - 16
b) Sixth term:
a6 = a5 + d
a6 = - 16 + (- 4)
a6 = - 20
c) Seventh term:
a7 = a6 + d
a7 = - 20 + (- 4)
a7 = - 24
a) First difference:
d = a2 - a1 = (- 1/2) - (- 1/2)d = a2 - a1 = - 1/2 + 1/2d = a2 - a1 = 0 --------- equation 1
b) Second difference:d = a3 - a2 = (- 1/2) - (- 1/2)
d = a3 - a2 = - 1/2 + 1/2d = a3 - a2 = 0 --------- equation 2
a) Fifth term:
a5 = a4 + d
a5 = - 1/2 + 0
a5 = - 1/2
b) Sixth term:
a6 = a5 + d
a6 = - 1/2 + 0
a6 = - 1/2
c) Seventh term:
a7 = a6 + d
a7 = - 1/2 + 0
a7 = - 1/2
a) First difference:
d = a2 - a1 = (3) - (1)d = a2 - a1 = 3 - 1d = a2 - a1 = 2 --------- equation 1
b) Second difference:d = a3 - a2 = 9 - 3
d = a3 - a2 = 6 --------- equation 2
a) First difference:
d = a2 - a1 = (2a) - (a)d = a2 - a1 = 2a - ad = a2 - a1 = a --------- equation 1
b) Second difference:d = a3 - a2 = (3a) - (2a)
d = a3 - a2 = 3a - 2ad = a3 - a2 = a --------- equation 2
a) Fifth term:
a5 = a4 + d
a5 = 4a + a
a5 = 5a
b) Sixth term:
a6 = a5 + d
a6 = 5a + a
a6 = 6a
c) Seventh term:
a7 = a6 + d
a7 = 6a + a
a7 = 7a
a) First difference:
d = a2 - a1 = (a2) - (a)d = a2 - a1 = a(a - 1) --------- equation 1
b) Second difference:d = a3 - a2 = (a3) - (a2)
d = a3 - a2 = a2(a - 1) --------- equation 2
a) First difference:
d = a2 - a1 = √8 - √2
d = a2 - a1 = 2√2 - √2
d = a2 - a1 = √2 --------- equation 1
b) Second difference:
d = a3 - a2 = √18 - √8d = a3 - a2 = 3√2 - 2√2d = a3 - a2 = √2 --------- equation 2
a) Fifth term:
a5 = a4 + d
a5 = √32 + √2
a5 = 4√2 + √2
a5 = 5√2
a5 = √50
b) Sixth term:
a6 = a4 + da6 = 6√2
a6 = √50 + √2a6 = 5√2 + √2
a6 = √72
c) Seventh term:
a7 = a4 + da7 = 7√2
a7 = √72 + √2a7 = 6√2 + √2
a7 = √98
a) First difference:
d = a2 - a1 = √6 - √3
d = a2 - a1 = √3√2 - √3
d = a2 - a1 = √3(√2 - 1) --------- equation 1
b) Second difference:
d = a3 - a2 = √9 - √6d = a3 - a2 = √3√3 - √3√2d = a3 - a2 = √3(√3 - √2) --------- equation 2
a) First difference:
d = a2 - a1 = 32 - 12
d = a2 - a1 = 9 - 1
d = a2 - a1 = 8 --------- equation 1
b) Second difference:d = a3 - a2 = 52 - 32
d = a3 - a2 = 25 - 9
d = a3 - a2 = 16 --------- equation 2
a) First difference:
d = a2 - a1 = 52 - 12
d = a2 - a1 = 25 - 1
d = a2 - a1 = 24 --------- equation 1
b) Second difference:d = a3 - a2 = 72 - 52
d = a3 - a2 = 49 - 25
d = a3 - a2 = 24 --------- equation 2
c) Third difference:d = a4 - a3 = 73 - 72
d = a4 - a3 = 73 - 49
d = a4 - a3 = 24 --------- equation 3
a) Fifth term:
a5 = a4 + d
a5 = 73 + 24
a5 = 97
b) Sixth term:
a6 = a4 + d
a6 = 97 + 24a6 = 121
c) Seventh term:
a7 = a4 + d
a7 = 121 + 24a7 = 145
No comments:
Post a Comment