NCERT10th MathematicsExercise 6.2Topic: 6 Triangles
Click here for ⇨ NCERT-10-6-Triangles - Ex- 6.1
EXERCISE 6.2
Q1. In the following fig, (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).
Solution:
(i) In ∆ ABC, DE ‖ BC, find EC in fig (i)
a) In ∆ ABC and ∆ ADE,
< ABC = < ADE (corresponding angles)
< ACB = < AED (corresponding angles)
< BAC = < DAE (common angle)
So, ∆ ABC ~ ∆ ADE
b) Using basic proportionality theorem,
(AD)/(DB) = (AE)/(EC)
(1.5)/3 = 1/(EC)
1/2 = 1/(EC)
(EC) = 2
c) So, here EC = 2 cm.
(ii) In ∆ ABC, DE ‖ BC, find AD in fig (ii)
a) In ∆ ABC and ∆ ADE,
< ABC = < ADE (corresponding angles)
< ACB = < AED (corresponding angles)
< BAC = < DAE (common angle)
So, ∆ ABC ~ ∆ ADE
b) Using basic proportionality theorem,
(AD)/(DB) = (AE)/(EC)
(AD)/(7.2) = (1.8)/(5.4)
(AD) = [(1.8)(7.2)]/(5.4)
(AD) = (1.8)[(72)/(54)]
(AD) = (1.8)[(8)/(6)]
(AD) = (18/10)[(8)/(6)]
(AD) = (3/10)[(8)]
(AD) = [(3)(8)]/10
(AD) = 24/10
(AD) = 2.4
c) So, here AD = 2.4 cm.
Q2. E and F are points on the sides PQ and PR respectively of a ∆ PQR. For each of the following cases, state whether EF || QR:
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm
Solution:
(i) PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
1) Using basic proportionality theorem,
a) If EF ‖ QR, then we must have,
(PE)/(EQ) = (PF)/(FR) ----------- equation 1
b) LHS = (PE)/(EQ)
LHS = (3.9)/(3)LHS = 1.3 ----------- equation 2
c) RHS = (PF)/(FR)
RHS = (3.6)/(2.4)
RHS = (36)/(24)
RHS = 3/2
RHS = 1.5 ----------- equation 3
2) So, from equations 2 and 3, we can say that (PE)/(EQ) ≠ (PF)/(FR).
3) So, EF is not paraller to QR.
(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm
1) Using basic proportionality theorem,
a) If EF ‖ QR, then we must have,
(PE)/(EQ) = (PF)/(FR) ----------- equation 1
b) LHS = (PE)/(EQ)
LHS = (4)/(4.5)
LHS = (40)/(45)
LHS = 8/9 ----------- equation 2
c) RHS = (PF)/(FR)
RHS = (8)/(9)
RHS = 8/9 ----------- equation 3
2) So, from equations 2 and 3, we can say that (PE)/(EQ) = (PF)/(FR).
3) So, EF is paraller to QR.
(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm
1) First we will find EQ and FR
a) EQ = PQ - PE
EQ = 1.28 - 0.18EQ = 1.10 ----------- equation 1
b) FR = PR - PFFR = 2.56 - 0.36
FR = 2.20 ----------- equation 2
2) Using basic proportionality theorem,
a) If EF ‖ QR, then we must have,
(PE)/(EQ) = (PF)/(FR) ----------- equation 3
b) LHS = (PE)/(EQ)
LHS = (0.18)/(1.10)
LHS = (18)/(110)
LHS = (9)/(55)
LHS = 9/55 ----------- equation 4
c) RHS = (PF)/(FR)
RHS = (0.36)/(2.20)
RHS = (36)/(220)
RHS = (18)/(110)
RHS = (9)/(55)
RHS = 9/55 ----------- equation 5
2) So, from equations 4 and 5, we can say that (PE)/(EQ) = (PF)/(FR).
3) So, EF is paraller to QR.
Q3. In the following fig. , if LM || CB and LN || CD, prove that
(AM)/(AB) = (AN)/(AD).
< AML = < ABC (corresponding angles)
< ALM = < ACB (corresponding angles)
< MAL = < BAC (common angle)
So, ∆ AML ~ ∆ ABC
b) Using basic proportionality theorem,
(AM)/(AB) = (AL)/(AC) ----------- equation 1
2) In ∆ ADC, LN ‖ CD,
a) In ∆ ANL and ∆ ADC,
< ANL = < ADC (corresponding angles)
< ALN = < ACD (corresponding angles)
< NAL = < DAC (common angle)
So, ∆ ANL ~ ∆ ADC
b) Using basic proportionality theorem,
(AN)/(AD) = (AL)/(AC) ----------- equation 2
3) From equations 1 and 2, we have (AM)/(AB) = (AN)/(AD). Hence proved.
Q4. In the following Fig., DE || AC and DF || AE. Prove that BF/FE = BE/EC
Solution:1) In ∆ ABC, DE ‖ AC,a) Using basic proportionality theorem,
(BD)/(DA) = (BE)/(EC) ----------- equation 1
2) In ∆ BAE, DF ‖ AE, a) Using basic proportionality theorem,
(BD)/(DA) = (BF)/(FE) ----------- equation 2
3) From equations 1 and 2, we have (BE)/(EC) = (BF)/(FE). Hence proved.
Q5. In the following Fig., DE || OQ and DF || OR. Show that EF || QR.
1) In ∆ ABC, DE ‖ AC,
a) Using basic proportionality theorem,
(BD)/(DA) = (BE)/(EC) ----------- equation 1
2) In ∆ BAE, DF ‖ AE,
a) Using basic proportionality theorem,
(BD)/(DA) = (BF)/(FE) ----------- equation 2
3) From equations 1 and 2, we have (BE)/(EC) = (BF)/(FE). Hence proved.
Q5. In the following Fig., DE || OQ and DF || OR. Show that EF || QR.
Solution:1) In ∆ PQO, DE ‖ OQ,a) Using basic proportionality theorem,
(PD)/(DO) = (PE)/(EQ) ----------- equation 1
2) In ∆ POR, DF ‖ OR, a) Using basic proportionality theorem,
(PD)/(DO) = (PF)/(FR) ----------- equation 2
3) From equations 1 and 2, we have (PE)/(EQ) = (PF)/(FR).4) So, EF ‖ QR. Hence proved.
Q6. In the following Fig., A, B, and C are points on OP, OQ, and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.
1) In ∆ PQO, DE ‖ OQ,
a) Using basic proportionality theorem,
(PD)/(DO) = (PE)/(EQ) ----------- equation 1
2) In ∆ POR, DF ‖ OR,
a) Using basic proportionality theorem,
(PD)/(DO) = (PF)/(FR) ----------- equation 2
3) From equations 1 and 2, we have (PE)/(EQ) = (PF)/(FR).
4) So, EF ‖ QR. Hence proved.
Q6. In the following Fig., A, B, and C are points on OP, OQ, and OR respectively such that AB || PQ and AC || PR. Show that BC || QR.
Solution:1) In ∆ OPQ, AB ‖ PQ,a) Using basic proportionality theorem,
(OA)/(AP) = (OB)/(BQ) ----------- equation 1
2) In ∆ OPR, AC ‖ PR, a) Using basic proportionality theorem,
(OA)/(AP) = (OC)/(CR) ----------- equation 2
3) From equations 1 and 2, we have (OB)/(BQ) = (OC)/(CR).4) So, BC ‖ QR. Hence proved.
Q7. Using Theorem 6.1, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).
1) In ∆ OPQ, AB ‖ PQ,
a) Using basic proportionality theorem,
(OA)/(AP) = (OB)/(BQ) ----------- equation 1
2) In ∆ OPR, AC ‖ PR,
a) Using basic proportionality theorem,
(OA)/(AP) = (OC)/(CR) ----------- equation 2
3) From equations 1 and 2, we have (OB)/(BQ) = (OC)/(CR).
4) So, BC ‖ QR. Hence proved.
Q7. Using Theorem 6.1, prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).
Solution:1) In ∆ ABC, point P is the midpoint of AB,a) So we have,
(AP)/(PB) = 1 ----------- equation 1
2) In ∆ ABC, PQ ‖ BC, a) Using basic proportionality theorem,
(AP)/(PB) = (AQ)/(QC) ----------- equation 2
3) From equations 1 and 2, we have (AQ)/(QC) = 1.4) Here, AQ = QC, so Q is the midpoint of AC.5) So, line PQ bisects the third side AC of ∆ ABC. Hence proved.
Q8. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it inClass IX).
1) In ∆ ABC, point P is the midpoint of AB,
a) So we have,
(AP)/(PB) = 1 ----------- equation 1
2) In ∆ ABC, PQ ‖ BC,
a) Using basic proportionality theorem,
(AP)/(PB) = (AQ)/(QC) ----------- equation 2
3) From equations 1 and 2, we have (AQ)/(QC) = 1.
4) Here, AQ = QC, so Q is the midpoint of AC.
5) So, line PQ bisects the third side AC of ∆ ABC. Hence proved.
Q8. Using Theorem 6.2, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in
Class IX).
Solution:1) In ∆ ABC, point P is the midpoint of AB,a) So we have,
(AP)/(PB) = 1 ----------- equation 1
2) In ∆ ABC, point Q is the midpoint of AC, a) So we have,
(AQ)/(QC) = 1 ----------- equation 2
3) From equations 1 and 2, we have (AP)/(PB) = (AQ)/(QC) = 1.4) So, PQ ‖ BC. Hence proved.
Q9. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at point O. Show that AO/BO = CO/DO.
1) In ∆ ABC, point P is the midpoint of AB,
a) So we have,
(AP)/(PB) = 1 ----------- equation 1
2) In ∆ ABC, point Q is the midpoint of AC,
a) So we have,
(AQ)/(QC) = 1 ----------- equation 2
3) From equations 1 and 2, we have (AP)/(PB) = (AQ)/(QC) = 1.
4) So, PQ ‖ BC. Hence proved.
Q9. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at point O. Show that AO/BO = CO/DO.
Solution:1) In trapezium ABCD, AB ‖ CD, and diagonals AC and BD intersect at O.2) Construct line PQ such that PQ ‖ AB and PQ ‖ DC.3) In ∆ ABC, OQ ‖ AB,a) Using basic proportionality theorem,
(BQ)/(CQ) = (AO)/(CO) ----------- equation 1
4) In ∆ BDC, OQ ‖ DC, a) Using basic proportionality theorem,
(BQ)/(CQ) = (BO)/(DO) ----------- equation 2
3) From equations 1 and 2, we have (AO)/(CO) = (BO)/(DO).4) So, we have (AO)/(BO) = (CO)/(DO). Hence proved.
Q10. The diagonals of a quadrilateral ABCD intersect each other at the point O such that (AO)/(BO) = (CO)/(DO). Show that ABCD is a trapezium.
1) In trapezium ABCD, AB ‖ CD, and diagonals AC and BD intersect at O.
2) Construct line PQ such that PQ ‖ AB and PQ ‖ DC.
3) In ∆ ABC, OQ ‖ AB,
a) Using basic proportionality theorem,
(BQ)/(CQ) = (AO)/(CO) ----------- equation 1
4) In ∆ BDC, OQ ‖ DC,
a) Using basic proportionality theorem,
(BQ)/(CQ) = (BO)/(DO) ----------- equation 2
3) From equations 1 and 2, we have (AO)/(CO) = (BO)/(DO).
4) So, we have (AO)/(BO) = (CO)/(DO). Hence proved.
Q10. The diagonals of a quadrilateral ABCD intersect each other at
the point O such that (AO)/(BO) = (CO)/(DO). Show that ABCD is a trapezium.
Solution:
1) In quadrilateral ABCD, diagonals AC and BD intersect at O.2) Construct line PQ such that PQ ‖ AB.3) In ∆ ABC, OQ ‖ AB,a) Using basic proportionality theorem,
(BQ)/(CQ) = (AO)/(CO) ----------- equation 1
4) As per the problem,(AO)/(BO) = (CO)/(DO)
(AO)/(CO) = (BO)/(DO) ----------- equation 2
5) From equations 1 and 2, we have,(BO)/(DO) = (BQ)/(CQ) ----------- equation 3
6) So, from equation 3 and the converse of the basic proportionality theorem,PQ ‖ AB, so AB ‖ CD.
7) Therefore quadrilateral ABCD is the trapezium.
1) In quadrilateral ABCD, diagonals AC and BD intersect at O.
2) Construct line PQ such that PQ ‖ AB.
3) In ∆ ABC, OQ ‖ AB,
a) Using basic proportionality theorem,
(BQ)/(CQ) = (AO)/(CO) ----------- equation 1
4) As per the problem,
(AO)/(BO) = (CO)/(DO)
(AO)/(CO) = (BO)/(DO) ----------- equation 2
5) From equations 1 and 2, we have,
(BO)/(DO) = (BQ)/(CQ) ----------- equation 3
6) So, from equation 3 and the converse of the basic proportionality theorem,
PQ ‖ AB, so AB ‖ CD.
7) Therefore quadrilateral ABCD is the trapezium.
Need help with math? We're here to help! Our resources include NCERT textbooks, lessons on Triangles, and more. Join our community of students and teachers today! #mathhelp #NCERT #studentsuccess #Triangles #education #learning #students #teachers #math
Need help with math? We're here to help! Our resources include NCERT textbooks, lessons on Triangles, and more. Join our community of students and teachers today! #mathhelp #NCERT #studentsuccess #Triangles #education #learning #students #teachers #math
No comments:
Post a Comment