NCERT10th MathematicsExercise 8.2Topic: 8 Introduction to Trigonometry
We're here to help you with math! Our resources include NCERT textbooks, lessons on Introduction to Trigonometry, and more. Join our community of students and teachers today!
Click here for ⇨ NCERT-10-8-Introduction to Trigonometry - Ex- 8.1
EXERCISE 8.2
(i) sin 60° cos 30° + sin 30° cos 60°
(ii) 2 tan2 45° + cos2 30° – sin2 60°
(iii) [cos 45°] / [sec 30° + cosec 30°]
(iv) [sin 30° + tan 45° – cosec 60°] / [sec 30° + cos 60° + cot 45°]
(v) [5 cos2 60° + 4 sec2 30° – tan2 45°] / [sin2 30° + cos2 30°]
1) Using the above table,
a) sin 60° = √3/2,
b) cos 30° = √3/2,
c) sin 30° = 1/2
d) cos 60° = 1/2
our expression = sin 60° cos 30° + sin 30° cos 60°
our expression = (√3/2) (√3/2) + (1/2) (1/2)
our expression = (3/4) + (1/4)
our expression = (3 + 1)/4
our expression = 4/4
our expression = 1
1) Using the above table,
a) tan 45° = 1,
b) cos 30° = √3/2,
c) sin 60° = √3/2
our expression = 2 tan2 45° + cos2 30° – sin2 60°
our expression = 2(1)2 + (√3/2)2 – (√3/2)2
our expression = 2(1) + (3/4) – (3/4)
our expression = 2 + 0
our expression = 2
a) cos 45° = 1/√2,
b) sec 30° = 2/√3,
c) cosec 30° = 2,
2) So, [cos 45°] / [sec 30° + cosec 30°] = (3√2 – √6) / 8.
1) Using the above table,a) sin 30° = 1/2,
b) tan 45° = 1,
c) cosec 60° = 2/√3,
d) sec 30° = 2/√3,
e) cos 60° = 1/2,
f) cot 45° = 1,
a) sin 30° = 1/2,
b) tan 45° = 1,
c) cosec 60° = 2/√3,
d) sec 30° = 2/√3,
e) cos 60° = 1/2,
f) cot 45° = 1,
(v) [5 cos2 60° + 4 sec2 30° – tan2 45°] / [sin2 30° + cos2 30°]
1) Using the above table,a) cos 60° = 1/2,
b) sec 30° = 2/√3,
c) tan 45° = 1,
d) sin 30° = 1/2,
e) cos 30° = √3/2,
a) cos 60° = 1/2,
b) sec 30° = 2/√3,
c) tan 45° = 1,
d) sin 30° = 1/2,
e) cos 30° = √3/2,
Q 2. Choose the correct option and justify your choice :
(i) 2tan 30°/1+tan230° =
(A) sin 60° (B) cos 60° (C) tan 60° (D) sin 30°
(ii) 1-tan245°/1+tan245° =
(A) tan 90° (B) 1 (C) sin 45° (D) 0
(iii) sin 2A = 2 sin A is true when A =
(A) 0° (B) 30° (C) 45° (D) 60°
(iv) 2tan30°/1-tan230° =
(A) cos 60° (B) sin 60° (C) tan 60° (D) sin 30°
Solution:
a) tan 30° = 1/√3,
a) tan 45° = 1,
1- tan245°/1+ tan245° = (1 - (1)2) / (1 + (1)2)
1- tan245°/1+ tan245° = (1 - 1) / (1 + 1)
1- tan245°/1+ tan245° = (0) / (2)
1- tan245°/1+ tan245° = 0
Ans: (D) 0.
a) Now we will check sin 2A = 2 sin A for A = 0°
LHS = sin 2A
LHS = sin 2(0)
LHS = sin 0
LHS = 0 ------ equation 1
RHS = 2 sin ARHS = 2 sin 0RHS = 2 (0)
RHS = 0 ------ equation 2
b) From equations 1 and 2, we have
LHS = RHS, so sin 2A = 2 sin A is true when A = 0°.
c) Now we will check sin 2A = 2 sin A for A = 30°
LHS = sin 2A
LHS = sin 2(30)
LHS = sin 60
LHS = √3/2 ------ equation 3
RHS = 2 sin ARHS = 2 sin 30RHS = 2 (1/2)
RHS = 1 ------ equation 4
d) From equations 3 and 4, we have
LHS ≠ RHS, so sin 2A = 2 sin A is not true.
e) Now we will check sin 2A = 2 sin A for A = 45°
LHS = sin 2A
LHS = sin 2(45)
LHS = sin 90
LHS = 1 ------ equation 5
RHS = 2 sin ARHS = 2 sin 45RHS = 2 (1/√2)
RHS = 2/√2 ------ equation 6
f) From equations 5 and 6, we have
LHS ≠ RHS, so sin 2A = 2 sin A is not true.
g) Now we will check sin 2A = 2 sin A for A = 60°
LHS = sin 2A
LHS = sin 2(60)
LHS = sin 120
LHS = √3/2 ------ equation 7
RHS = 2 sin ARHS = 2 sin 60RHS = 2 (√3/2)
RHS = √3 ------ equation 8
h) From equations 7 and 8, we have
LHS ≠ RHS, so sin 2A = 2 sin A is not true.
a) tan 30° = 1/√3,
B.
Solution:
a) tan (A + B) = √3 --------- equation 1
b) tan (A – B) = 1/√3 --------- equation 2
a) tan 60° = √3 --------- equation 3b) tan 30° = 1/√3 --------- equation 4
tan (A + B) = tan 60°
(A + B) = 60° --------- equation 5
tan (A – B) = tan 30°
(A – B) = 30° --------- equation 6
(A + B) = 60°
+ (A – B) = 30°
2A = 90°
A = 90°/2
A = 45° --------- equation 7
A + B = 60°
45° + B = 60°
B = 60° – 45°
B = 15°
(i) sin (A + B) = sin A + sin B.(ii) The value of sin θ increases as θ increases.(iii) The value of cos θ increases as θ increases.(iv) sin θ = cos θ for all values of θ.(v) cot A is not defined for A = 0°.
Solution:
sin (A + B) = sin A + sin B --------- equation 1
LHS = sin (A + B)
LHS = sin (30° + 60°)
LHS = sin 90°
LHS = 1 --------- equation 2
RHS = sin A + sin B
RHS = sin 30° + sin 60°
RHS = (1/2) + (√3/2)3) From equations 2 and 3, we have
RHS = (1 + √3)/2 --------- equation 3
LHS ≠ RHS, so sin (A + B) = sin A + sin B is false.
"the value of sin θ increases as θ increases" is true.
"the value of cos θ increases as θ increases" is false.
"sin θ = cos θ for all values of θ" is false.
No comments:
Post a Comment