Saturday, June 8, 2024

175-NCERT-10-8-Introduction to Trigonometry - Ex- 8.2

NCERT
10th Mathematics
Exercise 8.2
Topic: 8 Introduction to Trigonometry

We're here to help you with math! Our resources include NCERT textbooks, lessons on Introduction to Trigonometry, and more. Join our community of students and teachers today!

Click here for ⇨ NCERT-10-8-Introduction to Trigonometry - Ex- 8.1

EXERCISE 8.2

1. Evaluate the following :
(i) sin 60° cos 30° + sin 30° cos 60°
(ii) 2 tan2 45° + cos2 30° – sin2 60°
(iii) [cos 45°] / [sec 30° + cosec 30°]
(iv) [sin 30° + tan 45° – cosec 60°] / [sec 30° + cos 60° + cot 45°]
(v)  [5 cos2 60° + 4 sec2 30° – tan2 45°] / [sin2 30° + cos2 30°]

Solution:

(i) sin 60° cos 30° + sin 30° cos 60°

1) Using the above table,

a) sin 60° = √3/2,
b) cos 30° = √3/2,
c) sin 30° = 1/2
d) cos 60° = 1/2
our expression = sin 60° cos 30° + sin 30° cos 60°
our expression = (√3/2) (√3/2) + (1/2) (1/2)
our expression = (3/4) + (1/4)
our expression = (3 + 1)/4
our expression = 4/4
our expression = 1
2) So, sin 60° cos 30° + sin 30° cos 60° = 1.

(ii) 2 tan2 45° + cos2 30° – sin2 60°

1) Using the above table,

a) tan 45° = 1,
b) cos 30° = √3/2,
c) sin 60° = √3/2
our expression 2 tan2 45° + cos2 30° – sin2 60°
our expression = 2(1)2 + (√3/2)2  (√3/2)2
our expression = 2(1) + (3/4)  (3/4)
our expression = 2 + 0
our expression  = 2
2) So, 2 tan2 45° + cos2 30° – sin2 60° = 2.

(iii) [cos 45°] / [sec 30° + cosec 30°]

1) Using the above table,
a) cos 45° = 1/√2,
b) sec 30° = 2/√3,
c) cosec 30° = 2, 

2) So, [cos 45°] / [sec 30° + cosec 30°] = (3√2  √6) / 8.


(iv) [sin 30° + tan 45° – cosec 60°] / [sec 30° + cos 60° + cot 45°]

1) Using the above table,
a) sin 30° = 1/2,
b) tan 45° = 1,
c) cosec 60° = 2/√3,
d) sec 30° = 2/√3,
e) cos 60° = 1/2,
f) cot 45° = 1,

(v)  [5 cos2 60° + 4 sec2 30° – tan2 45°] / [sin2 30° + cos2 30°]

1) Using the above table,
a) cos 60° = 1/2,
b) sec 30° = 2/√3,
c) tan 45° = 1,
d) sin 30° = 1/2, 
e) cos 30° = √3/2,

 

Q 2. Choose the correct option and justify your choice :

(i) 2tan 30°/1+tan230° =

(A) sin 60°            (B) cos 60°          (C) tan 60°            (D) sin 30°

(ii) 1-tan245°/1+tan245° =

(A) tan 90°            (B) 1                    (C) sin 45°            (D) 0

(iii)  sin 2A = 2 sin A is true when A =

(A) 0°                   (B) 30°                  (C) 45°                 (D) 60°

(iv) 2tan30°/1-tan230° =

(A) cos 60°          (B) sin 60°             (C) tan 60°           (D) sin 30°

Solution:


(i) 2tan 30°/1+tan230° 

1) Using the above table,
a) tan 30° = 1/√3,

(ii) 1- tan245°/1+ tan245°


1) Using the above table,
a) tan 45° = 1,
1- tan245°/1+ tan245° = (1 - (1)2) / (1 + (1)2)
1- tan245°/1+ tan245° = (1 - 1) / (1 + 1)
1- tan245°/1+ tan245° = (0) / (2)
1- tan245°/1+ tan245° = 0
Ans: (D) 0. 

(iii)  sin 2A = 2 sin A is true when A = ? 

1) We have to check the above results one by one for A = 0°, 30°, 45°, 60°.
a) Now we will check sin 2A = 2 sin A for A 
LHS = sin 2A
LHS = sin 2(0)
LHS = sin 0
LHS = 0 ------ equation 1
RHS = 2 sin A
RHS = 2 sin 0
RHS = 2 (0)
RHS = 0 ------ equation 2
b) From equations 1 and 2, we have
LHS = RHS, so sin 2A = 2 sin A is true when A = 0°.
c) Now we will check sin 2A = 2 sin A for A = 3
LHS = sin 2A
LHS = sin 2(30)
LHS = sin 60
LHS = √3/2 ------ equation 3
RHS = 2 sin A
RHS = 2 sin 30
RHS = 2 (1/2)
RHS = 1 ------ equation 4
d) From equations 3 and 4, we have
LHS  RHS, so sin 2A = 2 sin A is not true. 
e) Now we will check sin 2A = 2 sin A for A = 45°
LHS = sin 2A
LHS = sin 2(45)
LHS = sin 90
LHS = 1 ------ equation 5
RHS = 2 sin A
RHS = 2 sin 45
RHS = 2 (1/2)
RHS = 2/2 ------ equation 6
f) From equations 5 and 6, we have
LHS  RHS, so sin 2A = 2 sin A is not true. 
g) Now we will check sin 2A = 2 sin A for A = 6
LHS = sin 2A
LHS = sin 2(60)
LHS = sin 120
LHS = √3/2 ------ equation 7
RHS = 2 sin A
RHS = 2 sin 60
RHS = 2 (√3/2)
RHS = √3 ------ equation 8
h) From equations 7 and 8, we have
LHS  RHS, so sin 2A = 2 sin A is not true. 
2) From all the above equations, sin 2A = 2 sin A is true only when A = 0° 

(iv) 2tan30°/1-tan230° = ? 

1) Using the above table,
a) tan 30° = 1/√3, 

Q 3. If tan (A + B) = √3 and tan (A – B) = 1/√3; 0° < A + B ≤ 90°; A > B, find A and
B.

Solution:

1) It is given that,
a) tan (A + B) = √3 --------- equation 1
b) tan (A – B) = 1/√3 --------- equation 2 
2) Using the above table,
a) tan 60° = √3 --------- equation 3
b) tan 30° = 1/√3 --------- equation 4
3) From equations 1 and 3, we have,
tan (A + B) = tan 60°
(A + B) = 60° --------- equation 5
4) From equation 2 and 4, we have,
tan (A – B) = tan 30°
(A – B) = 30° --------- equation 6
5) Adding equations 5 and 6, we have,
      (A + B) = 60°
+    (A – B) = 30°
          ----------------------------- 
2A      =  90°
  A      =  90°/2
  A      =  45° --------- equation 7
6) Put the value of A = 45° from equation 7 in equation 5, we have, 
A + B = 60°
45° + B = 60°
B = 60° – 45°
B = 15°
7) So, here A = 45° and B = 15°.

Q 4. State whether the following are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B.
(ii) The value of sin θ increases as θ increases.
(iii) The value of cos θ increases as θ increases.
(iv) sin θ = cos θ for all values of θ.
(v) cot A is not defined for A = 0°.

Solution:

(i) sin (A + B) = sin A + sin B.

Ans: False.

1) Let A = 30° and B = 60°.
2) Now we will check the result sin (A + B) = sin A + sin B for A = 30° and B = 60°.
sin (A + B) = sin A + sin B --------- equation 1
LHS = sin (A + B)
LHS = sin (30° + 60°)
LHS = sin 90°
LHS = 1 --------- equation 2 
RHS = sin A + sin B
RHS = sin 30° + sin 60°
RHS = (1/2) + (√3/2)
RHS = (1 + √3)/2 --------- equation 3
3) From equations 2 and 3, we have
LHS  RHS, so sin (A + B) = sin A + sin B is false.

(ii) The value of sin θ increases as θ increases.

Ans: True.

1) sin 0° = 0, sin 30° = 1/2, sin 45° = 1/√2sin 60° = √3/2sin 90° = 1, so 
"the value of sin θ increases as θ increases" is true.

(iii) The value of cos θ increases as θ increases. 

Ans: False.

1) cos 0° = 1, cos 30° = √3/2, cos 45° = 1/√2cos 60° = 1/2cos 90° = 0, so 
"the value of cos θ increases as θ increases" is false.

(iv) sin θ = cos θ for all values of θ. 

Ans: False.

1) sin θ = cos θ is true only when θ = 45°, as sin 45° = cos 45° = 1/2, so 
"sin θ = cos θ for all values of θ" is false.

(v) cot A is not defined for A = 0°. 

Ans: True.

1) As cot 0° = so "cot A is not defined for A = 0°" is true.

#mathhelp #NCERT #studentsuccess #Trigonometry #education #learning #students #teachers #math

No comments:

Post a Comment