Wednesday, June 5, 2024

174-NCERT-10-8-Introduction to Trigonometry - Ex- 8.1

NCERT
10th Mathematics
Exercise 8.1
Topic: 8 Introduction to Trigonometry

Need help with math? We're here to help! Our resources include NCERT textbooks, lessons on Introduction to Trigonometry, and more. Join our community of students and teachers today!

EXERCISE 8.1

Q1. In  ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine :
(i) sin A, cos A
(ii) sin C, cos C

Solution:
(i) sin A, cos A

1) By the theorem of Pythagoras, we have,
(AC)= (AB)2 + (BC)2

(AC)= (24)2 + (7)2

(AC)= 576 + 49
(AC)= 625
AC ± 5
2) As distance is always positive, AC = 5 ------- equation 1.
3) Now we will find sin A, cos A.
4) We know that:
a) First we will find sin A 
sin A = (side opposite)/hypotenuse
sin A = 7/25
b) Now we will find cos A
cos A = (adjacent side)/hypotenuse
cos A = 24/25
5) Now we will find sin C, cos C.
6) We know that:
a) First we will find sin C 
sin C = (side opposite)/hypotenuse
sin C = 24/25
b) Now we will find cos C
cos C = (adjacent side)/hypotenuse
cos C = 7/25
Q 2. In the following fig., find tan P – cot R.

Solution:
1) By the theorem of Pythagoras, we have,

(QR)= (PR)2 - (PQ)2

(QR)= (13)2 - (12)2

(QR)= (13 - 12) (13 + 12)
(QR)= (1) (25)
QR ± 5
2) As distance is always positive, QR = 5 ------- equation 1.
3) First we will find tan P, cot R.
4) We know that:
a) First we will find tan P 
tan P = opposite side/adjacent side
tan P = 5/12 ------- equation 2
b) Now we will find cot R
cot R = adjacent side/opposite side
cot R = 5/12 ------- equation 3
5) So,

tan P – cot R =  (5/12) - (5/12)

tan P – cot R =  0.

Q 3. If sin A = 3/4 calculate cos A and tan A.

Solution:

1) Here, sin A = 3/4, so by definition,

Opposite side BC = 3 and hypotenuse AC = 4.

2) By the theorem of Pythagoras, we have,
(AB)= (AC)2 - (BC)2

(AB)= (4)2 - (3)2

(AB)= (4 - 3) (4 + 3)

(AB)= (7)
AB ± √7
3) As distance is always positive, AB = √7 ------- equation 1.
4) Now we will find cos A and tan A.
5) We know that:
a) First we will find cos A 
cos A = (adjacent side)/hypotenuse
cos A = √7/4
b) Now we will find tan A
tan A = opposite side/adjacent side
tan A = 3/√7
6) So here cos A = √7/4 and tan A = 3/√7.

Q 4. Given 15 cot A = 8, find sin A and sec A.

Solution:

1) Here, 15 cot A = 8, so cot A = 8/15, so by definition,

adjacent side AB = 8, opposite side BC = 15.

2) By the theorem of Pythagoras, we have,
(AC)= (AB)2 + (BC)2

(AC)= (8)2 + (15)2

(AC)= (64) + (225)

(AC)= (289)
AC= ± 17
3) As distance is always positive, AC = 17 ------- equation 1.
4) Now we will find sin A and sec A.
5) We know that:
a) First we will find sin A 
sin A = (opposite side)/hypotenuse
sin A = 15/17
b) Now we will find sec A
sec A = hypotenuse/adjacent side
sec A = 17/8
6) So here sin A = 15/17 and sec A = 17/8.

Q 5. Given sec ๐›ณ = 13/12, calculate all other trigonometric ratios.

Solution:

1) Here, sec ๐›ณ = 13/12, so by definition,

hypotenuse AC = 13, adjacent side AB = 12.

2) By the theorem of Pythagoras, we have,
(BC)= (AC)2 - (AB)2

(BC)= (13)2 - (12)2

(BC)= (13 - 12) (13 + 12)

(BC)= (1) (25) 

(BC)= (25)
BC= ± 5
3) As distance is always positive, BC = 5 ------- equation 1.
4) Now we will find sin A, cos A, tan A, cosec A, and cot A.
5) We know that:
a) First we will find sin A 
sin A = opposite side/hypotenuse
sin A = 5/13
b) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = 12/13
c) Now we will find tan A 
tan A = opposite side/adjacent side
tan A = 5/12

d) Now we will find cosec A 
cosec A = hypotenuse/opposite side
cosec A = 13/5
e) Now we will find cot A 
cot A = adjacent side/opposite side
cot A = 12/5

6) So here, sin A = 5/13, cos A = 12/13, tan A = 5/12, cosec A = 13/5, and 

cot A = 12/5.


Q 6. If  A and  B are acute angles such that cos A = cos B, then show
that  A =  B.

Solution:
1) cos A = cos B (given) ------- equation 1
2) Now we will find cos A and cos B.
3) Here,
a) First we will find cos A 
cos A = (adjacent side)/hypotenuse
cos A = AC/AB ------- equation 2
b) Now we will find cos B
cos B = (adjacent side)/hypotenuse
cos B = CB/AB ------- equation 3
4) From equations 1, 2, and 3, we have

AC/AB = CB/AB

AC = CB ------- equation 4
5) From equation 4, we have
 A =  B, hence proved.

Q 7. If cot ๐›ณ = 7/8, evaluate 
(i) [(1 + sin ๐›ณ) (1 - sin ๐›ณ)]/[(1 + cos ๐›ณ) (1 - cos ๐›ณ)], 
(ii) cot๐›ณ

Solution:
1) cot ๐›ณ = 7/8, in above diagram,

2) By the theorem of Pythagoras, we have,
(AB)= (AC)2 + (BC)2

(AB)= (8)2 + (7)2

(AB)= (64) + (49)

(AB)= (113) 

AB± 113
3) As distance is always positive, AB = 113 ------- equation 1.
4) Now we will find sin ๐›ณ, cos ๐›ณ.
5) We know that:
a) First we will find sin ๐›ณ 
sin ๐›ณ = opposite side/hypotenuse
sin 
๐›ณ = 8/113
b) Now we will find cos ๐›ณ
cos ๐›ณ = adjacent side/hypotenuse
cos ๐›ณ = 7/113
6) Now we will find the value of:

i) [(1 + sin ๐›ณ) (1 - sin ๐›ณ)]/[(1 + cos ๐›ณ) (1 - cos ๐›ณ)] 

[(1 + sin ๐›ณ) (1 - sin ๐›ณ)]/[(1 + cos ๐›ณ) (1 - cos ๐›ณ)]
[(1 - sin2๐›ณ)]/[(1 - cos2๐›ณ)]
[(1 - (8/113)2]/[(1 - (7/113)2]
[(1 - (64/113)]/[(1 - (49/113)]
[(113 - 64)/113]/[(113 - 49)/113]
[(49)/113]/[(64)/113]
[(49)/(64)]
 
 (ii) cot๐›ณ
= cot๐›ณ
= (7/8)2
= (49/64)

Q 8. If 3 cot A = 4, check whether (1 - tan2 A)/(1 + tan2 A) = cos2 A – sinA or not.

Solution:

1) 3 cot A = 4, so cot A = 4/3. 

2) By the theorem of Pythagoras, we have,
(AC)= (AB)2 + (BC)2

(AC)= (4)2 + (3)2

(AC)= (16) + (9)

(AC)= (25) 

AC± 5
3) As distance is always positive, AC = 5 ------- equation 1.
4) We will find sin A, cos A, tan A.
5) We know that:
a) First we will find sin A 
sin A = opposite side/hypotenuse
sin 
A = 3/5
b) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = 4/5
c) Now we will find tan A
tan A = opposite side/adjacent side
tan A = 3/4 
6) Now we will check for (1 - tan2 A)/(1 + tan2 A) = cos2 A – sinA is true or not.

(1 - tan2 A)/(1 + tan2 A) = cos2 A – sinA

LHS = (1 - tan2 A)/(1 + tan2 A)
LHS = (1 - (3/4)2)/(1 + (3/4)2)
LHS = (1 - (9/16))/(1 + (9/16))
LHS = [(16 - 9)/16]/[(16 + 9)/16]
LHS = [(7)/16]/[(25)/16]
LHS = 7/25 ------- equation 2
RHS = cos2 A – sinA
RHS = (4/5)2 - (3/5)2
RHS = (16/25) - (9/25)
RHS = (16 - 9)/25
RHS = 7/25 ------- equation 3

7) From equations 2 and 3, we have
(1 - tan2 A)/(1 + tan2 A) = cos2 A – sinA is true.

Q 9. In triangle ABC, right-angled at B, if tan A = 1/√3, find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C

Solution:

1) tan A = 1/√3, so according to the diagram, we have,

2) By the theorem of Pythagoras, we have,
(AC)= (AB)2 + (BC)2
(AC)= (√3)2 + (1)2
(AC)= (3) + (1)
(AC)= (4) 
AC± 2

3) As distance is always positive, AC = 2 ------- equation 1.
4) Now we will find sin A, sin C, cos A, and cos C.
5) We know that:
a) First we will find sin A 
sin A = opposite side/hypotenuse
sin 
A = 1/2
b) First we will find sin C 
sin C = opposite side/hypotenuse
sin 
C = √3/2
c) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = √3/2
d) Now we will find cos C
cos C = adjacent side/hypotenuse
cos C = 1/2 
6) Now we will find the following:

(i) sin A cos C + cos A sin C
sin A cos C + cos A sin C
(1/2) (1/2) + (√3/2) (√3/2)
(1/4) + (3/4)
(1 + 3)/4
= 4/4
= 1
 ------- equation 2

(ii) cos A cos C – sin A sin C
cos A cos C – sin A sin C
(√3/2) (1/2) (1/2) (√3/2)
(√3/4) (√3/4)
(
√3 √3)/4
= 0/4
= 0
 ------- equation 3

Q 10. In PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P, and tan P.

Solution:

1) In  PQR, PR + QR = 25, let QR be x, so PR will be (25 - x) we have,

2) By the theorem of Pythagoras, we have,
(PR)= (PQ)2 + (QR)2

(25 - x)= (5)2 + (x)2

(25 - x)(x)2 = (5)2      applying (a2 - b2) = (a - b) (a + b) we get,

(25 - x - x) (25 - x x) = (5)2

(25 - 2x) (25) = 25

(25 - 2x) = 25/25

(25 - 2x) = 1

- 2x = 1 - 25

- 2x = - 24

x = (- 24)/(- 2)

x = 12

QR = 12 ------- equation 1
3) We know that 
PR + QR = 25
PR + 12 = 25
PR = 25 - 12
PR = 13 ------- equation 2
4) So our diagram will be: 
5) Now we will find sin P, cos P, and tan P.

6) We know that:
a) First we will find sin P 
sin P = opposite side/hypotenuse
sin 
P = 12/13
b) Now we will find cos P
cos P = adjacent side/hypotenuse
cos P = 5/13
c) Now we will find tan P
tan P = opposite side/adjacent side
tan P = 12/5
7) So here, sin P = 12/13, cos P =5/13, and tan P = 12/5. 

11. State whether the following are true or false. Justify your answer.

(i) The value of tan A is always less than 1.

(ii) sec A = 12/5 for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin ๐›ณ = 4/3 for some angle ๐›ณ.

Solution:

(i) The value of tan A is always less than 1.
Ans: We know that tan 60 = √3, so this statement is false.
 
(ii) sec A = 12/5 for some value of angle A.
Ans: sec A = hypotenuse/adjacent side, and hypotenuse is the largest
side, so sec A = 12/5 for some value of angle A is true.
 
(iii) cos A is the abbreviation used for the cosecant of angle A.
Ans: false. cos A is the abbreviation used for cosine of angle A.

(iv) cot A is the product of cot and A.
Ans: false. cot A is not the product of cot and A, it is the abbreviation used
for cotangent of angle A.

(v) sin ๐›ณ = 4/3 for some angle ๐›ณ. 
Ans: sin ๐›ณ = opposite side/hypotenuse, and hypotenuse is the largest
side, so sin ๐›ณ = 4/3 for some value of angle A is not true. The value of sin ๐›ณ is always less than 1.

#mathhelp #NCERT #studentsuccess #Trigonometry #education #learning #students #teachers #math 

Click here for ⇨ NCERT-10-8-introduction-to-trigonometry - Ex- 8.2

ANIL SATPUTE

No comments:

Post a Comment