NCERT10th MathematicsExercise 8.1Topic: 8 Introduction to Trigonometry
Need help with math? We're here to help! Our resources include NCERT textbooks, lessons on Introduction to Trigonometry, and more. Join our community of students and teachers today!
EXERCISE 8.1
Q1. In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine :
(i) sin A, cos A
(ii) sin C, cos C
Solution:(i) sin A, cos A
1) By the theorem of Pythagoras, we have,(AC)2 = (AB)2 + (BC)2
(i) sin A, cos A
1) By the theorem of Pythagoras, we have,
(AC)2 = (AB)2 + (BC)2
(AC)2 = (24)2 + (7)2
(AC)2 = 576 + 49
(AC)2 = 625
AC = ± 5
2) As distance is always positive, AC = 5 ------- equation 1.
3) Now we will find sin A, cos A.
4) We know that:
a) First we will find sin A
sin A = (side opposite)/hypotenusesin A = 7/25
b) Now we will find cos A
cos A = (adjacent side)/hypotenuse
cos A = 24/25
5) Now we will find sin C, cos C.
6) We know that:
a) First we will find sin C
sin C = (side opposite)/hypotenusesin C = 24/25
b) Now we will find cos C
cos C = (adjacent side)/hypotenuse
cos C = 7/25
Q 2. In the following fig., find tan P – cot R.
(QR)2 = (13)2 - (12)2
(QR)2 = (13 - 12) (13 + 12)
(QR)2 = (1) (25)
QR = ± 5
2) As distance is always positive, QR = 5 ------- equation 1.3) First we will find tan P, cot R.4) We know that:a) First we will find tan P
tan P = opposite side/adjacent side
tan P = 5/12 ------- equation 2
b) Now we will find cot R
cot R = adjacent side/opposite side
cot R = 5/12 ------- equation 3
5) So,
(QR)2 = (13 - 12) (13 + 12)
(QR)2 = (1) (25)
QR = ± 5
2) As distance is always positive, QR = 5 ------- equation 1.
3) First we will find tan P, cot R.
4) We know that:
a) First we will find tan P
tan P = opposite side/adjacent sidetan P = 5/12 ------- equation 2
b) Now we will find cot R
cot R = adjacent side/opposite side
cot R = 5/12 ------- equation 3
5) So,
tan P – cot R = (5/12) - (5/12)
tan P – cot R = 0.
Q 3. If sin A = 3/4 calculate cos A and tan A.
1) Here, sin A = 3/4, so by definition,
Opposite side BC = 3 and hypotenuse AC = 4.
2) By the theorem of Pythagoras, we have,(AB)2 = (AC)2 - (BC)2
2) By the theorem of Pythagoras, we have,
(AB)2 = (AC)2 - (BC)2
(AB)2 = (4)2 - (3)2
(AB)2 = (4 - 3) (4 + 3)
(AB)2 = (4 - 3) (4 + 3)
(AB)2 = (7)
AB = ± √7
3) As distance is always positive, AB = √7 ------- equation 1.4) Now we will find cos A and tan A.5) We know that:a) First we will find cos A
cos A = (adjacent side)/hypotenuse
cos A = √7/4
b) Now we will find tan A
tan A = opposite side/adjacent side
tan A = 3/√7
6) So here cos A = √7/4 and tan A = 3/√7.
Q 4. Given 15 cot A = 8, find sin A and sec A.
(AB)2 = (7)
AB = ± √7
3) As distance is always positive, AB = √7 ------- equation 1.
4) Now we will find cos A and tan A.
5) We know that:
a) First we will find cos A
cos A = (adjacent side)/hypotenuse
cos A = √7/4
b) Now we will find tan A
tan A = opposite side/adjacent side
tan A = 3/√7
6) So here cos A = √7/4 and tan A = 3/√7.
Q 4. Given 15 cot A = 8, find sin A and sec A.
Solution:
1) Here, 15 cot A = 8, so cot A = 8/15, so by definition,
adjacent side AB = 8, opposite side BC = 15.
2) By the theorem of Pythagoras, we have,(AC)2 = (AB)2 + (BC)2
2) By the theorem of Pythagoras, we have,
(AC)2 = (AB)2 + (BC)2
(AC)2 = (8)2 + (15)2
(AC)2 = (64) + (225)
(AC)2 = (64) + (225)
(AC)2 = (289)
AC= ± 17
3) As distance is always positive, AC = 17 ------- equation 1.4) Now we will find sin A and sec A.5) We know that:a) First we will find sin A
sin A = (opposite side)/hypotenuse
sin A = 15/17
b) Now we will find sec A
sec A = hypotenuse/adjacent side
sec A = 17/8
6) So here sin A = 15/17 and sec A = 17/8.
Q 5. Given sec ๐ณ = 13/12, calculate all other trigonometric ratios.
(AC)2 = (289)
AC= ± 17
3) As distance is always positive, AC = 17 ------- equation 1.
4) Now we will find sin A and sec A.
5) We know that:
a) First we will find sin A
sin A = (opposite side)/hypotenuse
sin A = 15/17
b) Now we will find sec A
sec A = hypotenuse/adjacent side
sec A = 17/8
6) So here sin A = 15/17 and sec A = 17/8.
Q 5. Given sec ๐ณ = 13/12, calculate all other trigonometric ratios.
Solution:
1) Here, sec ๐ณ = 13/12, so by definition,
hypotenuse AC = 13, adjacent side AB = 12.
2) By the theorem of Pythagoras, we have,(BC)2 = (AC)2 - (AB)2
2) By the theorem of Pythagoras, we have,
(BC)2 = (AC)2 - (AB)2
(BC)2 = (13)2 - (12)2
(BC)2 = (13 - 12) (13 + 12)
(BC)2 = (13 - 12) (13 + 12)
(BC)2 = (1) (25)
(BC)2 = (25)
BC= ± 5
3) As distance is always positive, BC = 5 ------- equation 1.4) Now we will find sin A, cos A, tan A, cosec A, and cot A.5) We know that:a) First we will find sin A
sin A = opposite side/hypotenuse
sin A = 5/13
b) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = 12/13
c) Now we will find tan A tan A = opposite side/adjacent side
tan A = 5/12
(BC)2 = (25)
BC= ± 5
3) As distance is always positive, BC = 5 ------- equation 1.
4) Now we will find sin A, cos A, tan A, cosec A, and cot A.
5) We know that:
a) First we will find sin A
sin A = opposite side/hypotenuse
sin A = 5/13
b) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = 12/13
c) Now we will find tan Atan A = opposite side/adjacent side
tan A = 5/12
d) Now we will find cosec A
cosec A = hypotenuse/opposite sidecosec A = 13/5
e) Now we will find cot A
cot A = adjacent side/opposite sidecot A = 12/5
6) So here, sin A = 5/13, cos A = 12/13, tan A = 5/12, cosec A = 13/5, and
6) So here, sin A = 5/13, cos A = 12/13, tan A = 5/12, cosec A = 13/5, and
cot A = 12/5.
Q 6. If ∠ A and ∠ B are acute angles such that cos A = cos B, then show
that ∠ A = ∠ B.
Solution:1) cos A = cos B (given) ------- equation 12) Now we will find cos A and cos B.3) Here,a) First we will find cos A
cos A = (adjacent side)/hypotenuse
cos A = AC/AB ------- equation 2
b) Now we will find cos B
cos B = (adjacent side)/hypotenuse
cos B = CB/AB ------- equation 3
4) From equations 1, 2, and 3, we have
1) cos A = cos B (given) ------- equation 1
2) Now we will find cos A and cos B.
3) Here,
a) First we will find cos A
cos A = (adjacent side)/hypotenusecos A = AC/AB ------- equation 2
b) Now we will find cos B
cos B = (adjacent side)/hypotenuse
cos B = CB/AB ------- equation 3
4) From equations 1, 2, and 3, we have
AC/AB = CB/AB
AC = CB ------- equation 45) From equation 4, we have
∠ A = ∠ B, hence proved.
Q 7. If cot ๐ณ = 7/8, evaluate
(i) [(1 + sin ๐ณ) (1 - sin ๐ณ)]/[(1 + cos ๐ณ) (1 - cos ๐ณ)],
(ii) cot2 ๐ณ
Solution:1) cot ๐ณ = 7/8, in above diagram,
1) cot ๐ณ = 7/8, in above diagram,
2) By the theorem of Pythagoras, we have,(AB)2 = (AC)2 + (BC)2
2) By the theorem of Pythagoras, we have,
(AB)2 = (AC)2 + (BC)2
(AB)2 = (8)2 + (7)2
(AB)2 = (64) + (49)
(AB)2 = (64) + (49)
(AB)2 = (113)
AB= ± √113
3) As distance is always positive, AB = √113 ------- equation 1.4) Now we will find sin ๐ณ, cos ๐ณ.5) We know that:a) First we will find sin ๐ณ
sin ๐ณ = opposite side/hypotenuse
sin ๐ณ = 8/√113
b) Now we will find cos ๐ณ
cos ๐ณ = adjacent side/hypotenuse
cos ๐ณ = 7/√113
6) Now we will find the value of:
AB= ± √113
3) As distance is always positive, AB = √113 ------- equation 1.
4) Now we will find sin ๐ณ, cos ๐ณ.
5) We know that:
a) First we will find sin ๐ณ
sin ๐ณ = opposite side/hypotenuse
sin ๐ณ = 8/√113
b) Now we will find cos ๐ณ
cos ๐ณ = adjacent side/hypotenuse
cos ๐ณ = 7/√113
6) Now we will find the value of:
i) [(1 + sin ๐ณ) (1 - sin ๐ณ)]/[(1 + cos ๐ณ) (1 - cos ๐ณ)]
= [(1 + sin ๐ณ) (1 - sin ๐ณ)]/[(1 + cos ๐ณ) (1 - cos ๐ณ)]
= [(1 - sin2๐ณ)]/[(1 - cos2๐ณ)]= [(1 - (8/√113)2]/[(1 - (7/√113)2]
= [(1 - (64/113)]/[(1 - (49/113)]
= [(113 - 64)/113]/[(113 - 49)/113]
= [(49)/113]/[(64)/113]
= [(49)/(64)]
(ii) cot2 ๐ณ
= cot2 ๐ณ
= (7/8)2
= (49/64)
Q 8. If 3 cot A = 4, check whether (1 - tan2 A)/(1 + tan2 A) = cos2 A – sin2 A or not.
Solution:
1) 3 cot A = 4, so cot A = 4/3.
1) 3 cot A = 4, so cot A = 4/3.
2) By the theorem of Pythagoras, we have,(AC)2 = (AB)2 + (BC)2
2) By the theorem of Pythagoras, we have,
(AC)2 = (AB)2 + (BC)2
(AC)2 = (4)2 + (3)2
(AC)2 = (16) + (9)
(AC)2 = (16) + (9)
(AC)2 = (25)
AC= ± 5
3) As distance is always positive, AC = 5 ------- equation 1.4) We will find sin A, cos A, tan A.5) We know that:a) First we will find sin A
sin A = opposite side/hypotenuse
sin A = 3/5
b) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = 4/5
c) Now we will find tan A
tan A = opposite side/adjacent side
tan A = 3/4
6) Now we will check for (1 - tan2 A)/(1 + tan2 A) = cos2 A – sin2 A is true or not.
AC= ± 5
3) As distance is always positive, AC = 5 ------- equation 1.
4) We will find sin A, cos A, tan A.
5) We know that:
a) First we will find sin A
sin A = opposite side/hypotenuse
sin A = 3/5
b) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = 4/5
c) Now we will find tan A
tan A = opposite side/adjacent side
tan A = 3/4
6) Now we will check for (1 - tan2 A)/(1 + tan2 A) = cos2 A – sin2 A is true or not.
(1 - tan2 A)/(1 + tan2 A) = cos2 A – sin2 A
LHS = (1 - tan2 A)/(1 + tan2 A)
LHS = (1 - (3/4)2)/(1 + (3/4)2)
LHS = (1 - (9/16))/(1 + (9/16))
LHS = [(16 - 9)/16]/[(16 + 9)/16]
LHS = [(7)/16]/[(25)/16]
LHS = 7/25 ------- equation 2
RHS = cos2 A – sin2 A
RHS = (4/5)2 - (3/5)2
RHS = (16/25) - (9/25)
RHS = (16 - 9)/25
RHS = 7/25 ------- equation 3
7) From equations 2 and 3, we have
(1 - tan2 A)/(1 + tan2 A) = cos2 A – sin2 A is true.
Q 9. In triangle ABC, right-angled at B, if tan A = 1/√3, find the value of:
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
Solution:
1) tan A = 1/√3, so according to the diagram, we have,
1) tan A = 1/√3, so according to the diagram, we have,
2) By the theorem of Pythagoras, we have,(AC)2 = (AB)2 + (BC)2
(AC)2 = (√3)2 + (1)2
(AC)2 = (3) + (1)
(AC)2 = (4)
AC= ± 2
(AC)2 = (√3)2 + (1)2
(AC)2 = (3) + (1)
(AC)2 = (4)
AC= ± 2
3) As distance is always positive, AC = 2 ------- equation 1.4) Now we will find sin A, sin C, cos A, and cos C.5) We know that:a) First we will find sin A
sin A = opposite side/hypotenuse
sin A = 1/2
b) First we will find sin C
sin C = opposite side/hypotenuse
sin C = √3/2
c) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = √3/2
d) Now we will find cos C
cos C = adjacent side/hypotenuse
cos C = 1/2
6) Now we will find the following:
3) As distance is always positive, AC = 2 ------- equation 1.
4) Now we will find sin A, sin C, cos A, and cos C.
5) We know that:
a) First we will find sin A
sin A = opposite side/hypotenuse
sin A = 1/2
b) First we will find sin C
sin C = opposite side/hypotenuse
sin C = √3/2
c) Now we will find cos A
cos A = adjacent side/hypotenuse
cos A = √3/2
d) Now we will find cos C
cos C = adjacent side/hypotenuse
cos C = 1/2
6) Now we will find the following:
(i) sin A cos C + cos A sin C
= sin A cos C + cos A sin C
= (1/2) (1/2) + (√3/2) (√3/2)
= (1/4) + (3/4)
= (1 + 3)/4
= 4/4
= 1 ------- equation 2
= sin A cos C + cos A sin C
= (1/2) (1/2) + (√3/2) (√3/2)
= (1/4) + (3/4)
= (1 + 3)/4
= 4/4
= 1 ------- equation 2
(ii) cos A cos C – sin A sin C
= cos A cos C – sin A sin C
= (√3/2) (1/2) – (1/2) (√3/2)
= (√3/4) – (√3/4)
= (√3 – √3)/4
= 0/4
= 0 ------- equation 3
Q 10. In ∆ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P, and tan P.
= cos A cos C – sin A sin C
= (√3/2) (1/2) – (1/2) (√3/2)
= (√3/4) – (√3/4)
= (√3 – √3)/4
= 0/4
= 0 ------- equation 3
(25 - x)2 = (5)2 + (x)2
(25 - x)2 - (x)2 = (5)2 applying (a2 - b2) = (a - b) (a + b) we get,
(25 - x - x) (25 - x + x) = (5)2
(25 - 2x) (25) = 25
(25 - 2x) = 25/25
(25 - 2x) = 1
- 2x = 1 - 25
- 2x = - 24
x = (- 24)/(- 2)
x = 12
QR = 12 ------- equation 1
3) We know that
PR + QR = 25
PR + 12 = 25
PR = 25 - 12
PR = 13 ------- equation 2
6) We know that:a) First we will find sin P
sin P = opposite side/hypotenuse
sin P = 12/13
b) Now we will find cos P
cos P = adjacent side/hypotenuse
cos P = 5/13
c) Now we will find tan P
tan P = opposite side/adjacent side
tan P = 12/5
7) So here, sin P = 12/13, cos P =5/13, and tan P = 12/5.
Q 11. State whether the following are true or false. Justify your answer.
6) We know that:
a) First we will find sin P
sin P = opposite side/hypotenuse
sin P = 12/13
b) Now we will find cos P
cos P = adjacent side/hypotenuse
cos P = 5/13
c) Now we will find tan P
tan P = opposite side/adjacent side
tan P = 12/5
7) So here, sin P = 12/13, cos P =5/13, and tan P = 12/5.
Q 11. State whether the following are true or false. Justify your answer.
(i) The value of tan A is always less than 1.
(ii) sec A = 12/5 for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin ๐ณ = 4/3 for some angle ๐ณ.
Solution:
(i) The value of tan A is always less than 1.
Ans: We know that tan 60 = √3, so this statement is false.
(ii) sec A = 12/5 for some value of angle A.
Ans: sec A = hypotenuse/adjacent side, and hypotenuse is the largest
side, so sec A = 12/5 for some value of angle A is true.
(iii) cos A is the abbreviation used for the cosecant of angle A.
Ans: false. cos A is the abbreviation used for cosine of angle A.
(iv) cot A is the product of cot and A.
Ans: false. cot A is not the product of cot and A, it is the abbreviation used
for cotangent of angle A.
(v) sin ๐ณ = 4/3 for some angle ๐ณ.
Ans: sin ๐ณ = opposite side/hypotenuse, and hypotenuse is the largest
side, so sin ๐ณ = 4/3 for some value of angle A is not true. The value of sin ๐ณ is always less than 1.
#mathhelp #NCERT #studentsuccess #Trigonometry #education #learning #students #teachers #math
No comments:
Post a Comment